Abstract:
A medical device system and associated method monitor tissue hemoglobin concentration. Light attenuation is measured in a volume of tissue in a patient. A value of a tissue scattering coefficient corresponding to the tissue volume in the patient is established in response to the attenuation measurement. A second derivative of the light attenuation measurement is determined. An artifact correction term is computed in response to the established tissue scattering coefficient, and a tissue hemoglobin concentration is computed using the artifact correction term and the second derivative.
Abstract:
Described here are meters and methods for sampling, transporting, and/or analyzing a fluid sample. The meters may include a meter housing and a cartridge. In some instances, the meter may include a tower which may engage one or more portions of a cartridge. The meter housing may include an imaging system, which may or may not be included in the tower. The cartridge may include one or more sampling arrangements, which may be configured to collect a fluid sample from a sampling site. A sampling arrangement may include a skin-penetration member, a hub, and a quantification member.
Abstract:
A patient interface and method of locating the patient interface for use particularly in spectroscopy applications. The patient interface includes a concave region and first and second convex regions. A wing extends from the concave region to help locate the patient interface properly. The convex regions provide additional adhesion support, particularly when used on the thenar eminence. The patient interface may be placed in a number of locations on a patient to determine an optimum location for measurement prior to affixing the interface to the patient.
Abstract:
An apparatus and a program are provided which are capable of simultaneously measuring, evaluating, imaging and displaying the biological function of sites with different biological functions, such as the brain and the muscle, different parts of the brain or different muscle locations, using near-infrared spectroscopy. In an apparatus for evaluating biological function K, physiological indices, including parameters derived from changes in deoxyhemoglobin concentration and changes in oxyhemoglobin concentration, are calculated by a calculating part of a controller. To measure simultaneously, evaluate, image and display the biological functions of sites with different biological function, such as the brain and the muscle, different parts of the brain or different muscle locations, these physiological indices from different sites of the living body are adjusted in such a way that they can be compared with each other by the calculating part and displayed by a display part.
Abstract:
Disclosed are methods and apparatus for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment drug (e.g., insulin or glucose) and provide glycemic control. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte.
Abstract:
A blood test apparatus has a housing, a blood sensor, and a plurality of connectors. The blood sensor has a plurality of connection terminals that are electrically connected with each electrode of the electrode system; and a reference terminal that serves as a reference. The plurality of connectors are configured to connect to the plurality of connection terminals and the reference terminal of the blood sensor attached at a predetermined position in the blood test apparatus, respectively. And also, relations between the reference terminal and each of the plurality of connection terminals are measured to identify the reference terminal automatically.
Abstract:
Disclosed are methods and apparatuses for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment dose (e.g. insulin, dextrose, etc.) and provide glycemic control. The dose of the treatment drug may be based on the patient's calculated sensitivity to treatment dosing, for example. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte. Delivery of the treatment drug can be cut off if the determined analyte concentration indicates that continued delivery would be harmful to the patient.
Abstract:
This invention provides a monitor device capable of detecting possible abnormalities in body fluid withdrawal by a body fluid sampler and variations in the dilution when a withdrawn body fluid is diluted, and a living organism-measuring device with this monitor device. The former device includes a first optical sensor disposed on a diluent channel through which a diluent is introduced into a body fluid sampler for withdrawing a body fluid; a second optical sensor disposed on a diluted body fluid channel through which the diluted body fluid is transferred to a living organism-measuring sensor, and close to the first optical sensor; and a controlling unit for judging whether variations in a dilution to which the body fluid is diluted are within predetermined limits, from data outputted by the first optical sensor and data outputted by the second optical sensor. The latter device has the monitor device incorporated thereto.
Abstract:
A method includes initiating a blood fluid removal session of a patient; monitoring an indicator of tissue fluid volume of the patient, or a portion thereof, during the blood fluid removal session; monitoring an indicator of blood fluid volume of the patient during the blood fluid removal session; determining whether a ratio of the indicator of tissue fluid volume to indicator of blood fluid volume is outside of a predetermined range; and altering the rate of fluid removal during the blood fluid removal session if the ratio is determined to be outside of the predetermined range. A blood fluid removal system may be configured to carry out the method.
Abstract:
Methods for monitoring patient parameters and blood fluid removal system parameters include identifying those system parameters that result in improved patient parameters or in worsened patent parameters. By comparing the patient's current parameters to past parameters in response to system parameters or changes in system parameters, a blood fluid removal system may be able to avoid future use of parameters that may harm the patient and may be able to learn which parameters are likely to be most effective in treating the patient in a blood fluid removal session.