Abstract:
There is provided a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C. This material may have a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom Units. The reaction mixture for preparing this material contains a hydrolyzable source of alumina such as aluminum (isopropoxide).sub.2 acetoacetic ester chelate, and a hydrolyzable source of silica, such as tetraethylorthosilicate.
Abstract:
A hydrocracking catalyst with improved distillate selectivity comprises, in addition to a metal component, a mesoporous crystalline material together with a molecular sieve component of relatively smaller pore size. The metal component of the catalyst is preferably associated with the high-surface area mesoporous component and high-metal loadings can be achieved in order to give good hydrogenation activity to the catalyst. The relatively smaller pore size component is preferably a large pore size zeolite such as zeolite Y or an intermediate pore size zeolite such as ZSM-5; this component provides a higher level of acidic functionality than the mesoporous component, achieving a functional separation in the hydrocracking process, permitting the metals loading and acidic activities to be optimized for good catalyst selectivity and activity. The catalysts enable the distillate selectivities comparable to amorphous catalyst to be achieved with improved conversion activity.
Abstract:
A method for synthesizing an ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compound is improved through the addition of a strong acid to the reaction mixture.
Abstract:
This invention relates to a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C., a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom units.
Abstract:
This invention relates to an improved method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C., and an arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom units.
Abstract:
This invention relates to catalytic conversion of organic compounds over MCM-35, a new crystalline material exhibiting a distinctive X-ray diffraction pattern. The conversion process includes the mechanisms of cracking, hydrocracking, dewaxing, dehydrogenation and aromatic alkylation.
Abstract:
Amorphous aluminosilicates useful as catalysts, particularly for the decomposition of methanol to synthesis gas, are produced by reacting a source of silica, a source of alumina, a source of alkali metal, water and one or more polyamines other than a diamine. A class of effective polyamines is that known as polyethylene poly amines of which triethylene is representative. The catalytic activity of the aluminosilicate may be enhanced in particular by incorporation of the metals copper, zinc, gallium, bismuth, chromium, thorium, iron, cobalt, ruthenium, rhodium, nickel, palladium, iridium or platinum.
Abstract:
A process of producing a catalyst comprises forming mesoporous beta zeolite particles, impregnating mesoporous beta zeolite particles with a metal and phosphorus to produce a metal and phosphorus impregnated zeolite, and incorporating the metal and phosphorus impregnated zeolite with clay and alumina to produce the catalyst. The forming step comprises converting a crystalline beta zeolite to a non-crystalline material with reduced silica content relative to the crystalline beta zeolite, and crystalizing the non-crystalline material to produce mesoporous beta zeolite particles.
Abstract:
A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
Abstract:
This disclosure relates to new crystalline microporous solids (including silicate- and aluminosilicate-based solids), the compositions comprising 8 and 10 membered inorganic rings, particularly those having RTH topologies having a range of Si:Al ratios, methods of preparing these and known crystalline microporous solids using certain quaternized imidazolium cation structuring agents.