Abstract:
A method including positioning an insert in a vertical mold including a first mold portion and a second mold portion; and casting a material including a metal around at least a portion of the insert.
Abstract:
The present invention proposes a vacuum/high pressure filling apparatus which can improve the filling rate and shorten the impregnating time period in immersing a porous workpiece into a filling liquid. The vacuum/high pressure filling apparatus includes: an openable and closable hermetic partition chamber unit constituted by two upper and lower split partition wall unit portions, a partition chamber unit opening and closing mechanism to open and close the partition chamber unit, a vacuum suction opening and a pressurizing opening provided for the partition chamber unit, a liquid vessel arranged in the partition chamber unit to receive a filling liquid, a holder arranged, in the partition chamber unit, for the porous workpiece, an elevator unit to move the filling liquid in the liquid vessel and the porous workpiece relative to each other inside the partition chamber unit so as to immerse the porous workpiece into the filling liquid in the liquid vessel and pull up the workpiece from the filling liquid. When the partition chamber unit opening and closing mechanism brings the two upper and lower split partition wall unit portions into hermetic contact with each other, the partition chamber unit is closed and sealed. When the partition chamber opening and closing mechanism spaces the two upper and lower split partition wall unit portions from each other, the partition chamber unit is opened. By using the vacuum/high pressure filling apparatus according to the present invention, composite materials such as lubricant-impregnated metals, thermosetting resin-impregnated cast metals, etc. can be obtained.
Abstract:
After a molten metal of aluminum or an aluminum alloy having a temperature, which is higher than the liquidus line temperature of aluminum or the aluminum alloy by 5 to 200° C., is injected into a mold, when the mold is cooled to solidify the molten metal, the molten metal injected into the mold is pressurized at a pressure of 1.0 to 100 kPa from a high-temperature side to a low-temperature side, and the mean cooling rate is set to be 5 to 100° C./minute while the mold is cooled from the liquidus line temperature to 450° C., the temperature gradient formed in the mold being set to be in the range of from 1° C./cm to 50° C./cm.
Abstract:
A lightweight component in the form of an outlet guide vane for a gas turbine engine and a method of manufacturing such lightweight components are provided. The vane is filled with hollow metal ellipsoid members in a solid metal outer member. The arrangement of hollow metal ellipsoid members allows directionally tailored stiffness or strength.
Abstract:
A method of forming a molded porous product is provided. The method comprises injecting a material into a mold to form a molded product, and removing the molded product from the mold. The mold comprising multiple layers of shaping elements extending through a cavity, each layer of shaping elements including multiple shaping elements. The molded product produced after removal from the mold has a porous structure formed by at least some of the shaping elements of the layers of shaping elements. The mold used to make the molded porous product may include a relatively large number of shaping elements within a small area.
Abstract:
System and method of producing multi-layered aluminum alloy products are disclosed. A multi-layered aluminum alloy product may be formed by first heating a first aluminum alloy to a first temperature where the first temperature is at least about 5° C. lower than the eutectic temperature of the first aluminum alloy, second heating a second aluminum alloy to a second temperature where the second temperature is at least about 5° C. higher than the liquidus temperature of the second aluminum alloy, and coupling the second aluminum alloy to the first aluminum alloy to produce a multi-layered aluminum alloy product.
Abstract:
Provided is a cylinder block which includes a liner and a water jacket having a closed-deck structure in a simple configuration and which has a structure providing high rigidity and enabling easy formation at low cost. A cylinder block of the present invention includes a liner arranged on an inner circumference surface of a bored hole and a water jacket arranged on the outside of the liner in the radial direction. By a bending process of folding back an end portion of a cylinder-shaped member, a hollow portion capable of forming the water jacket is formed integrally in one end portion or both end portions of a liner portion forming the liner, and the cylinder-shaped member is enclosed with a cylinder block forming material by casting.
Abstract:
A wear resistant casting and method of fabrication thereof, the casting comprising inserts embedded in a matrix; each insert having a form such that a ratio A/B in any mutually perpendicular section that passes through the centre of mass of the insert is comprised between 0.4 and 2.5, and a distance C between two insert is at least two times smaller that a width thereof; the inserts forming at least one grid.
Abstract:
The present invention includes a step of cooling a molten metal within a fine space present in the inside of an object and hardening it while applying a forced external force exceeding atmospheric pressure to the molten metal. The fine space is opened on the outer surface of the object in terms of one end thereof. The forced external force is given by at least one member selected among a pressing pressure, an injection pressure and a rolling compaction and applied to the molten metal from the opening surface side on which the fine space is opened, in a state that the other end side of the fine space is closed.
Abstract:
A product including a damping substrate and a layer over a portion thereof, the layer including graphite, and a body portion positioned so that the layer is interposed between the body portion and the damping substrate.