Abstract:
A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.
Abstract:
An onboard charging system for an electric vehicle is configured to communicate with a power supply through exchange of control signals on a power supply line by modulating a charging current being supplied to the charging system. The charging system is capable of communicating fault and battery parameter data to the power supply, as well as a requested charging current used to regulate the power supply output. The power supply may convert high voltage AC power into a controllable DC output supplied directly to the electric vehicle, thereby providing a convenient means for the vehicle to initiate charging during operations. Connection between the electric vehicle and the power supply may be effected using an extendible and retractable electrical connection, such as a mechanical pantograph.
Abstract:
A temperature adjustment apparatus has a Peltier element supplied with electric power to allow heat exchange between an electronic device mounted on a vehicle and a heat exchange portion of the vehicle, and a Peltier element control section that controls electric power supplied to the Peltier element. When the temperature difference between a first surface of the Peltier element serving as an exothermic surface and a second surface of the Peltier element serving as an endothermic surface becomes larger than a first predetermined value as a result of supply of electric power to the Peltier element, the Peltier element control section stops supply of electric power to the Peltier element.
Abstract:
A vehicle has independent electric traction system (ETS) and internal combustion engine (ICE). A system controller, a data acquisition system, and a GPS system are added to the vehicle. A remote system has a data base of locations identifying emission non-attainment areas. The data acquisition system obtains the vehicle location along with parametric data related to operation of the vehicle. The remote system notifies the vehicle operator and the auxiliary control system of opportunities to obtain emission reduction credits in response to the vehicle location data and its operating status. The system controller or the operator switch between ICE operation and ETS operation in response to the vehicle location, emission reduction credit process, and parametric measurements of the vehicle operation to achieve an emissions credit result while optimizing fuel for the ICE and stored electrical potential energy for the ETS.
Abstract:
A power storage device includes a power storage unit including one or a plurality of cells, a first controller for performing control relating to the power storage unit, a first power line for supplying a first power to be output from the power storage unit to a load, a second power line for supplying a second power smaller than the first power to a second controller included in an external device, and a communication line used by the first and second controllers to communicate with each other.
Abstract:
Methods for managing charge status of an electric vehicle (EV) at a charge unit (CU) and systems that use cloud processing, are provided. One method includes detecting connection of a charging connector of the charge unit to a vehicle charge port of the EV. The method also includes receiving charge status of the EV while the charging connector is connected to the CU and activating a visual indicator at the CU. The visual indicator is set indicative of the charge status of the EV. The method includes changing the visual indicator as the charge status of the EV changes. The method enables a user device to receive notifications of charge status and communicate with cloud processing to request changing of the visual indicator of the CU to a non-full state even when the EV is at a full state of charging.
Abstract:
Methods and systems are provided. One method includes receiving a request, at a server, to grant e-keys to a recipient for use of a vehicle, the vehicle being pre-associated to a user account. The method further includes generating a unique access code, at the server, in response to receiving the request. The method then encrypts the access code, at the server, using a vehicle public key associated with the vehicle, the vehicle public key is associated with the user account. The method includes sending the encrypted access code to the recipient for receipt by a device of the recipient. The encrypted access code is defined for transmission to the vehicle by way of the device of the recipient, and the encrypted access code is associated with instructions to cause the vehicle to decrypt the access code using a private key of the vehicle and to transmit the access code after decryption back to the device of the recipient along with privilege settings for the use of the vehicle. The access code received from the vehicle functions as e-keys for the vehicle that enable access to use of the vehicle in accordance with conditions defined in the privilege settings.
Abstract:
Methods and systems are provided for processing information associated with vehicles via one or more servers of a cloud system. One example method includes establishing a communication link between a computing device associated with a vehicle and a server. The communication link is over a wireless network and the communication link is established in association with a user account. The communication link is established for one or more sessions The method further includes receiving, at the server, a plurality of actions associated with inputs to the vehicle. The plurality of actions are received during the one or more sessions, and generating, by the server, a recommendation to program a setting at the vehicle. One or more of the plurality of actions at the vehicle during the one or more sessions are processed to determine a confidence score associated with generating the recommendation to program the setting. Generation of the recommendation occurs upon reaching or exceeding a predefined threshold. The server then sends to the user account the recommendation to enable programming of the setting for the vehicle.
Abstract:
Methods and systems are provided for vehicles having a rechargeable energy storage system (RESS). A first sensor is configured to measure an ambient temperature for the vehicle. A second sensor is configured to measure a temperature of the RESS. The processor is coupled to the first sensor and the second sensor, and is configured to at least facilitate taking an action based on an expected degradation of the RESS after vehicle key-off based at least in part on the ambient temperature and the RESS temperature.
Abstract:
A warm-up apparatus for a vehicle including a system which charges a battery by using an external power supply is provided. The warm-up apparatus includes a heater for warming up, a current detector, a voltage detector and a resistance changer. The heater is mounted in the vehicle and produces heat by receiving electric power from the external power supply. The current detector detects an allowable current value of the external power supply. The voltage detector detects an output voltage value of the external power supply. The resistance changer changes an electric resistance value of the heater based on the allowable current value detected by the current detector and the output voltage value detected by the voltage detector.