Abstract:
An insulation material based on polymeric plastic is specified, to which glass particles that consist of types of glass with different softening points are added for stabilization in case of fire. To provide protection in a very broad temperature range, at least three types of glass with different softening points are used as the glass particles, namely, a first type of glass with a softening point below about 470° C., a second type of glass with a softening point above about 470° C. and below about 620° C., and a third type of glass with a softening point above about 760° C.
Abstract:
Disclosed are electric cables with improved armor wires used with wellbore devices to analyze geologic formations adjacent a wellbore. The cables include at least one insulated conductor, and one or more armor wires surrounding the insulated conductor. The armor wires include a low density core surrounded by a corrosion resistant alloy clad, where the alloy clad includes such alloys as beryllium-copper based alloys, nickel-chromium based alloys, superaustenitic stainless steel alloys, nickel-cobalt based alloys, nickel-molybdenum-chromium based alloys, and the like. The low density core may be based upon titanium or titanium alloys. The cables of the invention may be any useful electric cable design, including monocables, quadcables, heptacables, quadcables, slickline cables, multiline cables, coaxial cables, or seismic cables.
Abstract:
An insulating-film-forming composition including an organic solvent and a hydrolysis-condensation product which is obtained by hydrolysis and condensation of a component (A) in the presence of a component (B).
Abstract:
Electrical terminals are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
Abstract:
A composition for the formation of an insulating film comprising a low dielectric constant polymeric material and a sublimating material, which are dissolved in a solvent. Preferred low dielectric constant polymeric materials include polyaryl ethers. Preferred sublimating materials include silicone compounds having a closed stereostructure having atoms at its vertexes, such as those known as Si-T8 and Si-T12. A method of forming a low dielectric constant insulating film and electronic parts or components using an insulating film formed thereby are also disclosed.
Abstract:
Provided is a composite dielectric molded product exhibiting excellent properties such as the antenna gain and side lobe, etc. when used for a lens antenna, and exhibiting less variation of properties in one individual product and between individual products. The composite dielectric molded product is formed by molding a composite dielectric material containing a dielectric inorganic filler and an organic polymer material so that the dielectric constant anisotropy is in the range of about 1.00 to 1.05.
Abstract:
A composition for film formation comprising a polymer having repeating structural units represented by the formula (1), the structural unit having one or more alkyl groups therein, and an insulating film obtained by applying the composition for film formation to a substrate and heating the coating film.
Abstract:
Low VOC, dielectric compositions suitable for use in circuit board manufacture are disclosed. Also disclosed are methods of making circuit boards using the low VOC, dielectric compositions.
Abstract:
A dielectric film is obtained by heat curing a thermally curable fluorinated o-aminophenol polymer or oligomer based on an o-aminophenol compound and an aromatic dicarboxylic acid compound, at least one of which is mono- or poly-fluorinated, and having thermosetting groups at both ends that undergo cross-linking reaction upon thermal treatment. The dielectric film is employed in multilayer circuit boards.
Abstract:
A UV-curable acrylate-thiol-ene insulating coating composition for electrical conductors, a method of manufacturing a UV-curable acrylate-thiol-ene insulating coating composition for electrical conductors. The insulating coating being of about 2.5 nullm to about 500 nullm thickness, which cured coating has a dielectric dissipation factor (60Hz, 24null C.) of lower than about 0.05.