摘要:
Methods of forming a semiconductor device that includes a diffusion barrier film are provided. The diffusion barrier film includes a metal nitride formed by using a MOCVD process and partially treated with a plasma treatment. Thus, a specific resistance of the diffusion barrier film can be decreased, and the diffusion barrier film may have distinguished barrier characteristics.
摘要:
Provided is a semiconductor device including a fuse, in which a insulating layer surrounding the fuse or metal wiring is prevented from being damaged due to the cut of a fuse, which can occur when a repair process is performed. The semiconductor device includes a conductive line formed on a semiconductor layer, a protective layer formed on the conductive line, one or more fuses that are electrically connected to the conductive line, and a fuse protective layer formed on the one or more fuses, and spaced apart from the protective layer.
摘要:
A structure and formation method for electrically connecting aluminum and copper interconnections stabilize a semiconductor metallization process using an inner shape electrically connecting the aluminum and copper interconnections. To this end, a copper interconnection is disposed on a semiconductor substrate. An interconnection induction layer and an interconnection insertion layer are sequentially formed on the copper interconnection to have a contact hole exposing the copper interconnection. An upper diameter of the contact hole may be formed to be larger than a lower diameter thereof. A barrier layer and an aluminum interconnection are filled in the contact hole. The aluminum interconnection is formed not to directly contact the copper interconnection through the contact hole.
摘要:
Methods of forming an interlayer dielectric having an air gap are provided including forming a first insulating layer on a semiconductor substrate. The first insulating layer defines a trench. A metal wire is formed in the trench such that the metal wire is recessed beneath an upper surface of the first insulating layer. A metal layer is formed on the metal wire, wherein the metal layer includes a capping layer portion filling the recess, a upper portion formed on the capping layer portion, and an overhang portion formed on the portion of the first insulating layer adjacent to the trench protruding sideward from the upper portion. The first insulating layer is removed and a second insulating layer is formed on the semiconductor substrate to cover the metal layer, whereby an air gap is formed below the overhang portion of the metal layer. A portion of the second insulating layer is removed to expose the upper portion of the metal layer. The upper portion and the overhang portion of the metal layer are removed. A third insulating layer is formed on the semiconductor substrate from which the upper portion and the overhang portion have been removed to maintain the air gap.
摘要:
A metal interconnection of a semiconductor device is fabricated by forming a dielectric pattern including a hole therein on a substrate, and forming a barrier metal layer in the hole and on the dielectric layer pattern outside the hole. At least some of the barrier metal layer is oxidized. An anti-nucleation layer is selectively formed on the oxidized barrier metal layer outside the hole that exposes the oxidized barrier metal layer in the hole. A metal layer then is selectively formed on the exposed oxidized barrier layer in the hole.
摘要:
A method of forming a conductive plug for an integrated circuit device may include forming an insulating layer on an integrated circuit substrate with the insulating layer having a surface opposite the substrate and a recess therein. A titanium (Ti) layer may be formed on sidewalls of the recess and on the surface of the insulating layer opposite the substrate. After forming the titanium (Ti) layer, a reaction reducing layer may be formed on portions of the titanium layer on the surface of the insulating layer opposite the substrate by at least one of ionized physical vapour deposition (iPVD) and/or nitriding a portion of the titanium layer, and the reaction reducing layer may include a material other than titanium. After forming the reaction reducing layer, a TiN layer may be formed on the reaction reducing layer and on sidewalls of the recess in the insulating layer using metal organic chemical vapour deposition (MOCVD). After forming the TiN layer, a conductive plug may be formed on the TiN layer in the recess in the insulating layer.
摘要:
A structure and formation method for electrically connecting aluminum and copper interconnections stabilize a semiconductor metallization process using an inner shape electrically connecting the aluminum and copper interconnections. To this end, a copper interconnection is disposed on a semiconductor substrate. An interconnection induction layer and an interconnection insertion layer are sequentially formed on the copper interconnection to have a contact hole exposing the copper interconnection. An upper diameter of the contact hole may be formed to be larger than a lower diameter thereof. A barrier layer and an aluminum interconnection are filled in the contact hole. The aluminum interconnection is formed not to directly contact the copper interconnection through the contact hole.
摘要:
A substrate treating apparatus and related cleaning method are disclosed. The apparatus includes a stage heater disposed in the reaction chamber, serving as a first electrode during the generation of in-situ plasma, and supporting a substrate, a shower head disposed in the reaction chamber opposing the stage heater, serving as a second electrode during the generation of the in-situ plasma, and supplying a reaction gas into the reaction chamber, a remote plasma generator disposed external to the reaction chamber and configured to supply a cleaning gas to the reaction chamber following activation of the cleaning gas, and a gas transmitter disposed between the reaction chamber and the remote plasma generator and configured to transmit the reaction gas and the cleaning gas to the shower head.
摘要:
In a method for forming a field effect transistor, a metal nitride layer is formed on a gate electode insulating layer. Tantalum amine derivatives represented by the chemical formula Ta(NR1)(NR2R3)3, in which R1, R2 and R3 represent H or a C1-C6 alkyl group, may be used to form the metal nitride layer. Nitrogen may then be implanted into the metal nitride layer to increase the nitrogen content of the layer.
摘要:
In a method for forming a wiring of a semiconductor device using an atomic layer deposition, an insulating interlayer is formed on a substrate. Tantalum amine derivatives represented by a chemical formula Ta(NR1)(NR2R3)3 in which R1, R2 and R3 represent H or C1-C6 alkyl group are introduced onto the insulating interlayer. A portion of the tantalum amine derivatives is chemisorbed on the insulating interlayer. The rest of tantalum amine derivatives non-chemisorbed on the insulating interlayer is removed from the insulating interlayer. A reacting gas is introduced onto the insulating interlayer. A ligand in the tantalum amine derivatives chemisorbed on the insulating interlayer is removed from the tantalum amine derivatives by a chemical reaction between the reacting gas and the ligand to form a solid material including tantalum nitride. The solid material is accumulated on the insulating interlayer through repeating the above processes to form a wiring.
摘要翻译:在使用原子层沉积形成半导体器件的布线的方法中,在基板上形成绝缘中间层。 由化学式Ta(NR 1)3(NR 2 R 3)3表示的钽胺衍生物,其中 R 1,R 2和R 3代表H或C 1 -C 6 >烷基引入到绝缘中间层上。 一部分钽胺衍生物被化学吸附在绝缘中间层上。 在绝缘中间层上除去非化学吸附在绝缘中间层上的其余的钽胺衍生物。 将反应气体引入到绝缘中间层上。 化学吸附在绝缘中间层上的钽胺衍生物中的配体通过反应气体和配位体之间的化学反应从钽胺衍生物中除去以形成包括氮化钽的固体材料。 通过重复上述处理,将固体材料积聚在绝缘层间,形成布线。