Abstract:
A mobile disinfector using UV LEDs can include: a case forming an exterior structure of the disinfector; a cover including two parts coupled to respective sides of the case and including openings formed on the cover; and LED units exposed to outside through the openings formed on the cover. Since the cover is coupled to the case such that an angle between the cover and the case is adjusted, an irradiation angle of light emitted to the outside from the LED units is controlled.
Abstract:
A high-efficiency light-emitting device of the present invention includes: a nitride-based semiconductor laminate layer comprising a first conductive-type semiconductor layer, an active layer, and a second conductive-type semiconductor layer; a substrate comprising a first electrode and a second electrode each connected to the first conductive-type semiconductor layer and the second conductive-type semiconductor layer, a first pad electrode and a second pad electrode each connected with the first electrode and the second electrode, and a first connection pad and a second connection pad each connected with the first pad electrode and the second pad electrode; and a solder positioned between the pad electrodes and the connection pads.
Abstract:
Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor. Further, there is provided an AC light-emitting device, wherein a plurality of arrays having the different numbers of light emitting cells are employed to increase light emission time and to reduce a flicker effect.
Abstract:
A light emitting device having a wide beam angle and a method of fabricating the same. The light emitting device includes a light emitting structure, a substrate disposed on the light emitting structure, and an anti-reflection layer covering side surfaces of the light emitting structure and the substrate, and at least a portion of an upper surface of the substrate is exposed.
Abstract:
A light-emitting diode chip configured to emit light of a first wavelength range and light of a second wavelength range, including a substrate, a light-emitting structure disposed on a first surface of the substrate, the light-emitting structure including an active layer disposed between a first conductivity-type semiconductor layer and a second conductivity-type semiconductor layer, and configured to emit light of the first wavelength range, and first and second distributed Bragg reflectors (DBRs) disposed on a second surface of the substrate. The first DBR is disposed closer to the substrate than the second DBR, the first wavelength range comprises a blue wavelength range, the first DBR comprises a higher reflectivity for light of the second wavelength range than for light of the first wavelength range, and the second DBR comprises a higher reflectivity for light of the first wavelength range than for light of the second wavelength range.
Abstract:
Disclosed are a semiconductor device and a method of fabricating the same. The method includes forming a first GaN layer, a sacrificial layer and a second GaN layer on a GaN substrate, wherein the sacrificial layer has a bandgap narrower than those of the GaN layers; forming a groove penetrating the second GaN layer and the sacrificial layer; growing GaN-based semiconductor layers on the second GaN layer to form a semiconductor stack; forming a support substrate on the semiconductor stack; and removing the GaN substrate from the semiconductor stack by etching the sacrificial layer. Accordingly, since the sacrificial layer is etched using the groove, the support substrate can be separated from the semiconductor stack without damaging the support substrate.
Abstract:
A light emitting diode (LED) stack for a display including a substrate, a first LED stack disposed on the substrate, a second LED stack disposed on the first LED stack, a third LED stack disposed on the second LED stack, a first color filter interposed between the first LED stack and the second LED stack, and a second color filter interposed between the second LED stack and the third LED stack, in which the second LED stack and the third LED stack are configured to transmit light generated from the first LED stack to the outside, and the third LED stack is configured to transmit light generated from the second LED stack to the outside.
Abstract:
A light emitting diode pixel for a display including a first LED sub-unit, a second LED sub-unit disposed on a first portion of the first LED sub-unit, and a third LED sub-unit disposed on a second portion of the second LED sub-unit, in which each of the first, second, and third LED sub-units includes a first conductivity type semiconductor layer and a second conductivity type semiconductor layer, light generated from the first LED sub-unit is configured to be emitted outside of the light emitting diode pixel through a third portion of the first LED sub-unit different from the first portion, and light generated from the second LED sub-unit is configured to be emitted outside of the light emitting diode pixel through a fourth portion of the second LED sub-unit different from the second portion.
Abstract:
A light emitting device including a light emitting structure including a plurality of light emitting parts, a dielectric structure disposed outside the light emitting structure, and a plurality of pads disposed on a first surface of the light emitting structure and electrically coupled with the light emitting parts, in which outer sidewalls of the pads are disposed inside an outer sidewall of the light emitting structure and an outer sidewall of the dielectric structure, at least one of the pads extends to a first surface of the dielectric structure, and the first surface of the dielectric structure is coplanar with the first surface of the light emitting structure.
Abstract:
A light emitting diode pixel for a display includes a first subpixel including a first LED sub-unit, a second subpixel including a second LED sub-unit, a third subpixel including a third LED sub-unit, and a bonding layer overlapping the first, second, and third subpixels, in which each of the first, second, and third LED sub-units includes a first type of semiconductor layer and a second type of semiconductor layer, each of the first, second, and third LED sub-units is disposed on a different plane, and light generated from the second subpixel is configured to be emitted to an outside of the light emitting diode pixel by passing through a lesser number of LED sub-units than light generated from the first subpixel and emitted to the outside.