Abstract:
A semiconductor device includes: a substrate having a first region and a second region; a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; a first bump on the first region; a first doped layer on the first fin-shaped structure and the bump; and a gate structure covering the bump.
Abstract:
A substrate having thereon a first dielectric layer, a second dielectric layer, and a hard mask layer is provided. A partial via is formed in the second dielectric layer and the hard mask layer. A first photoresist pattern with a first trench opening above the partial via and a second trench opening is formed on the hard mask layer. The hard mask layer and the second dielectric layer are etched through the first trench opening and the second trench opening, thereby forming a first dual damascene structure comprising a first trench and a first via, and a second trench in the second dielectric layer, respectively. A second photoresist pattern having a self-aligned via opening above the second trench is formed. The second dielectric layer is etched through the self-aligned via opening, thereby forming a second dual damascene structure comprising the second trench and a second via under the second trench.
Abstract:
A semiconductor device and a method for manufacturing the same are provided. A semiconductor device includes a substrate, a first capping layer formed above the substrate, a first dielectric layer formed on the first capping layer; a second capping layer formed on the first dielectric layer; a second dielectric layer formed on the second capping layer; a plurality of conducting lines separately formed on the substrate; a third capping layer formed on the conducting lines and the second dielectric layer; and several nano-gaps formed between the adjacent conducting lines, and the nano-gaps being formed in the second dielectric layer, or further extending to the second capping layer or to the first capping layer. The nano-gaps partially open one of the second and first dielectric layers, or the nano-gaps expose the first capping layer or the second capping layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a first bump on the first region and a second bump on the second region; forming a first doped layer on the first fin-shaped structure and the first bump; and forming a second doped layer on the second fin-shaped structure and the second bump.
Abstract:
A manufacturing method of a patterned structure of a semiconductor device includes following steps. A plurality of support features are formed on a substrate. A first conformal spacer layer is formed on the support features and a surface of the substrate, a second conformal spacer layer is formed on the first conformal spacer layer, and a covering layer is formed on the second conformal spacer layer. A gap between the support features is filled with the first conformal spacer layer, the second conformal spacer layer, and the covering layer. A first process is performed to remove a part of the covering layer, the second conformal spacer layer, and the first conformal spacer layer. A second process is performed to remove the support features or the first conformal spacer layer between the support feature and the second conformal spacer layer to expose a part of the surface of the substrate.
Abstract:
A FinFET is provided. The FinFET includes a substrate. A plurality of fin structures are defined on the substrate. A gate structure crosses each fin structure. Two first recesses are disposed on two sides of the gate structure respectively, wherein each first recess further includes a plurality of second recesses disposed therein, and the position of each second recess corresponds to each fin structure. Two epitaxial layers are disposed at two sides of the gate structure respectively and in the first recesses, each epitaxial layer has a bottom surface including a second concave and convex profile, and each epitaxial layer directly contacts a bottom surface of each first recess and a bottom surface of each second recess.
Abstract:
A static random access memory unit structure and layout structure includes two pull-up transistors, two pull-down transistors, two slot contact plugs, and two metal-zero interconnects. Each metal-zero interconnect is disposed on each slot contact plug and a gate of each pull-up transistor, in which, each slot contact plug crosses a drain of each pull-down transistor and a drain of each pull-up transistor and extends to cross an end of each metal-zero interconnect. A gap between the slot contact plugs is smaller than a gap between the metal-zero interconnects.
Abstract:
The present invention provides a method for forming a semiconductor structure. Firstly, a substrate is provided, the substrate comprises an insulating layer and at least one first nano channel structure disposed thereon, a first region and a second region being defined on the substrate, next, a hard mask is formed within the first region, afterwards, an etching process is performed, to remove parts of the insulating layer within the second region, an epitaxial process is then performed, to form an epitaxial layer on the first nano channel structure, and an anneal process is performed, to transform the first nano channel structure and the epitaxial layer into a first nanowire structure, wherein the diameter of the first nanowire structure within the first region is different from the diameter of the first nanowire structure within the second region.
Abstract:
A semiconductor device is provided, comprising a substrate with a first insulating film formed thereon, and a transistor formed on the first insulating film. The transistor at least comprises an oxide semiconductor layer formed on the first insulating film, a first gate insulation film formed on the oxide semiconductor layer, a gate electrode formed above the first gate insulation film, and spacers formed on the oxide semiconductor layer. The spacers at least cover the sidewalls of the first gate insulation film and the sidewalls of the gate electrode. The gate electrode has a gate width and the first gate insulation film has a first width, wherein the gate width is different from the first width.
Abstract:
A semiconductor device having metal gate includes a substrate, a metal gate formed on the substrate, a pair of spacers formed on sidewalls of the metal gate, a contact etch stop layer (CESL) covering the spacers, an insulating cap layer formed on the metal gate, the spacers and the CESL, and an ILD layer surrounding the metal gate, the spacers, the CESL and the insulating cap layer. The metal gate, the spacers and the CESL include a first width, and the insulating cap layer includes a second width. The second width is larger than the first width. And a bottom of the insulating cap layer concurrently contacts the metal gate, the spacers, the CESL, and the ILD layer.