Abstract:
A photoelectric converter device comprises a semiconductor substrate including a photoelectric converter element formed on its surface, a visible light filter arranged to at least partially cover the surface of the semiconductor substrate, and a support member attached to the surface of the semiconductor substrate. The photoelectric converter device further comprises, in an internal portion, a resin layer which absorbs infrared light. With this arrangement, undesirable influences of infrared light can be reduced.
Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
A single-photon detector includes a superconductor strip biased near its critical current. The superconductor strip provides a discernible output signal upon absorption of a single incident photon. In one example, the superconductor is a strip of NbN (niobium nitride). In another example, the superconductor strip meanders to increase its probability of receiving a photon from a light source. The single-photon detector is suitable for a variety of applications including free-space and satellite communications, quantum communications, quantum cryptography, weak luminescence, and semiconductor device testing.
Abstract:
The inventive sensor device includes a support structure, a sensing element mounted on the support substrate for sensing optical radiation and generating an electrical output signal in response thereto, and an encapsulant encapsulating the sensing element on the support structure. The encapsulant being configured to define a lens portion for focusing incident optical radiation onto an active surface of the sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting optical radiation that is not incident the lens portion onto the active surface of the sensing element. The collector portion may be a parabolic reflector that reflects incident light by total internal reflection. The sensor device may be incorporated into an assembly including a diffuser positioned across an aperture, and/or may be incorporated into a vehicle accessory such as a rearview mirror assembly.
Abstract:
A back side incident type image pickup sensor in which lowering of spatial resolution is eliminated and influence of stray light is removed is provided. Electric circuits including a driver circuit for driving a photoelectric conversion portion and a signal processing circuit for processing signals from the photoelectric conversion portion are each placed on the front side of a single crystal silicon substrate at a given distance in the horizontal direction from an opening. Influence of stray light is thus eliminated. The semiconductor substrate has high refractive index, thereby essentially allowing little lowering of spatial resolution. Lowering of spatial resolution is further prevented if the substrate is thinned.
Abstract:
A method of forming a microlens including, in one aspect, depositing a substantially non-photo-imageable microlens material over an area of a chip, a portion of which contains an array of photosensitive circuits, and patterning the microlens material over the array of photosensitive circuits to define a microlens over each photosensitive circuit.
Abstract:
A detector array that eliminates the channel spectrum effect. In one embodiment the detector consists of a charge couple device (CCD) detector having a photoactive layer supported on a wedge-shaped substrate. Incident radiation impinging any of the pixels and passing through the substrate to the wedge-shaped surface thereof is reflected back at an angle away from the pixel from which it passed through. An infrared array and a single element detector each including a wedge-shaped substrate are also disclosed. The detectors do not require costly signal processing equipment and further can be constructed in accordance with well known manufacturing techniques and with little or no additional cost beyond that normally associated with producing such devices.
Abstract:
An infrared collector for use in communications systems. The infrared collector employs a concentrator which concentrates infrared radiation received from some directions more than others. The concentrator is made of a dielectric material which is substantially transparent to infrared radiation and has a shape which is convex above a base plane determined by the top surface of an infrared radiation detector and in which any ray which connects any part of the top surface of the detector to any part of the concentrator above the base plane intersects the surface of the concentrator at an angle less than the critical angle for the material from which concentrator is made. The amount of concentration from a given direction is controlled by the curvature of the collector. The less a portion of the surface is curved, the less infrared radiation normal to the less-curved portion is concentrated. The collector may be used in environments where there is a predominant direction from which infrared noise is received in the collector which is different from the direction from which infrared communications signals are received in the collector.
Abstract:
A sunlight sensor for use in control of vehicle air conditioners, and provides which detects the sunlight thermal load. A light-cutoff film is formed on the upper surface of the transparent substrate (intermediate element) of the light-sensing element, and at the center of this light-cutoff film is formed a light-guiding hole. Left and right light-detection sections and are formed on the lower surface of the transparent substrate.
Abstract:
An optical sensor head (400) for providing an optical sensor with a hyperhemispherical field of view is disclosed. The optical sensor head (400) includes first and second lenses (430 and 440), each of the lenses (430 and 440) having a planar surface (434 and 444) and a convex surface (432 and 434). The sensor head (400) further includes a film (420) positioned between the lenses (430 and 440) for splitting the light beams impinging thereon.