Abstract:
A heating, ventilation, and air conditioning (HVAC) controller may include a housing and a printed circuit board (PCB) situated within the housing. The PCB may include a battery seat region and electrical terminals for electrically connecting a battery to the PCB when the battery is positioned at the battery seat region. The housing may include an opening that may be configured to receive the battery. The battery seat region may be at least partially offset relative to the opening in the housing, but accessible via the opening. The housing may be configured to allow the battery to be inserted into the opening and then moved laterally to the battery seat region, where the battery may be at least partially covered and/or protected by the housing when at the battery seat region. In some cases, the battery may be inserted within the housing without adjusting any part of the housing.
Abstract:
A method for designing and assembling a modular IT rack includes a manufacturer designing and constructing lightweight, modular corrugated cardboard modules/segments and corresponding banding and corner components that can be used to assemble the modular IT rack. A user/assembler of the modular IT rack assembles modular tray grouping and enclosure (MTGE) casing units using a first set of cardboard modules. The user constructs trays using a second set of cardboard modules. The user affixes cable support components to the sides of sub-groups of the constructed trays. The user encloses sub-groups of trays having the affixed cable support components within the assembled MTGE casing units to create MTGE blocks. The user vertically stacks the MTGE blocks having the tray sub-groups and the affixed cable support components enclosed within. The user aligns and secures the vertically stacked MTGE blocks in a fixed position using banding and corner components.
Abstract:
An electronic module is provided in which a chip is disposed over a substrate and electrically connected to the substrate by a plurality of electrical connect structures disposed between the chip and the substrate. A heat distributor, fabricated of a thermally conductive material, is disposed between the chip and the substrate and sized to extend beyond an edge of the chip to facilitate conduction of heat laterally out from between the chip and substrate. The heat distributor includes openings sized and positioned to allow the electrical connect structures to pass through the heat distributor without electrically contacting the heat distributor. The heat distributor is electrically isolated from the electrical connect structures, the chip and the substrate. In one implementation, the heat distributor physically contacts a thermally conductive enclosure of the electronic module to facilitate conduction of heat from between the chip and substrate to the enclosure.
Abstract:
Embodiments are described for displaying charging status on a multi-screen device. In embodiments, a determination is made that the device is connected to a power source for charging the battery. In response to the determination, a battery charging indicator is displayed. In some embodiments, if the device was originally powered off or in a standby mode, after a predetermined period of time, the device will be powered off or returned to the standby mode, and the battery charging indicator will no longer be displayed.
Abstract:
A system is disclosed which utilizes a stabilization disk 30 or rigid cup containing adhesive which is bonded to an underside of a circuit board and then bolted to a chassis of a piece of military electronic equipment, so as to create a mounting location between the circuit board and the chassis where the circuit board is lacking a regular fastener receiving mounting hole therethrough.
Abstract:
Methods and devices for configuring and displaying individual display screens of a multi-display device relative to the device state and/or user orientation of the device. More particularly, the device is equipped with one or more sensors that facilitate the detectability of the relationship of the primary screen to the secondary screen, and the general orientation of the device. The method includes correlating or controlling device state to management of windows, and correlating or controlling transitional states between open and closed states to device behavior and/or window operations. The method and device may present, for example, a closed state with both windows viewable, an open state with both windows viewable or a semi-open state with one or more of the windows viewable.
Abstract:
A handheld computing device is disclosed. The handheld computing device includes a seamless housing formed from an extruded metal tube. The extruded tube includes open ends and internal rails which serve as a guide for slidably assembling an operational assembly through the open ends of the extruded tube, a reference surface for positioning the operational assembly relative to an access opening in the seamless housing, and a support structure for supporting the operational assembly during use.
Abstract:
An electronic assembly may have a display, a display holder, and a printed circuit board (PCB). The display may have a front side for viewing the display, a back side, and side walls extending between the front side and the back side. The display holder may have a recess for receiving at least part of the display, where the display holder may extend adjacent part of the front side of the display and adjacent at least part of the side walls of the display. The PCB may be secured relative to the display holder and adjacent the back side of the display. The PCB may be in operative communication with the display. In some cases, a spacer may be situated between the back side of the display and the PCB.
Abstract:
A handheld computing device can include a substantially rectangular first screen having a front surface, a rear surface, and a beveled edge extending between the front and rear surfaces of the first screen and a substantially rectangular second screen rotatably connected to the first screen so that the device is foldable between an open position and a closed position, the second screen having a front surface, a rear surface, and a beveled edge extending between the front and rear surfaces of the second screen. When the device is in the closed position, the first and second screens are positioned back-to-back and the beveled edges of the first and second screens angle inwardly toward the other respective screen to provide an angled surface configured to facilitate opening the device.
Abstract:
The present invention is directed to an apparatus for reducing and constraining EMI (electronic magnetic radiation) emissions without affecting the internals of data storage system components. A baffle is attached to the exterior of the housing of a data storage system component by baffle mounts. The baffle is operable between a closed position, where the baffle blocks EMI emitted by connectors on the data storage system component, and an open position, where the connectors are not blocked allowing for servicing and cable management. The baffle may comprise an EMI absorbing material and be tuned to meet specific EMI requirements. The baffle mounts offsets the baffle from the data storage system component and the baffle includes a number of holes to allow airflow. The adjustable EMI baffling apparatus does not interfere with other mounted components while the data storage system component is mounted in a cabinet.