摘要:
The present invention is to provide a microscopic system by which a simultaneous observation at an ultra high vacuum condition by an electron microscope and by a scanning probe microscope is possible in an ultra high vacuum electron microscope chamber 9 equipped with an observation stage 3, to which an ultra high vacuum chamber 1 for a scanning probe microscope equipping with a scanning probe microscope holder 2 in which scanning probe microscope is contained and a specimen treatment chamber 5 possessing a specimen holder 4 on which a specimen is held are connected. Said each chamber of microscopic system can be separately exhausted to the ultra high vacuum level and the specimen holder and the scanning probe microscope holder can voluntarily be fixed to said observation stage and be removed from said observation stage.
摘要:
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
摘要:
An investigation and/or manipulation device for a sample which is located in a container fluid includes an investigation and/or manipulation tool which is mounted at a first of a cantilever and which during investigation and/or manipulation of the sample immerses into the container fluid. The opposite side of the cantilever is at least partly not immersed into the container fluid during investigation.
摘要:
An object of the present invention is to provide a novel tracking method and device, suitable for use in a recording means applying the technology of a scanning probe microscope, for recording and/or reproducing high-density information of a size of several tens of nm or less at high speed and with high accuracy. The tracking method and device includes a recording medium having bumpy structures for tracking, which are formed on the surface thereof, a cantilever having a tip for writing in, reading out and erasing information, and means for detecting bending and torsion of the cantilever. Further, the tip and the recording medium are moved relative to each other in the direction in which a fixed end and a free end of the cantilever are coupled to each other, in a state in which the tip has been brought into proximity to or contact with the recording medium. In this state, the amount and direction of the torsion of the cantilever, or the amount of the bending thereof and the direction of the torsion thereof due to the bumpy structures are set as feedback signals so as to perform tracking.
摘要:
A probing apparatus having an elastic body supported by a support and provided with a probe at its free end. The elastic body is disposed in a solution in which a sample is held. The elastic body is forcibly oscillated at its natural frequency by a driving source. A displacement detecting device detects a variation in the oscillation state of the elastic body which takes place when the tip of the probe is placed in the vicinity of the surface of the sample. The detected output from the displacement detecting device is fed to a sample data monitor device to provide a topographic image thereon.
摘要:
A data storage system that includes a positioning system for positioning the write/read mechanism and the storage medium of the data storage device with respect to each other in first and second predefined directions. The positioning system comprises a positioning apparatus comprising microfabricated first and second positioning assemblies. The positioning system further comprises a controller to position a positionable support structure of the first positioning assembly in a first predefined direction within a range of positioning that is larger than the range of movement of a moveable support structure of the first positioning assembly by controlling (A) a stationary support structure clamp in clamping and unclamping the positionable structure to and from the support structure, (B) a moveable structure clamp in clamping and unclamping the positionable support structure to and from the moveable support structure, and (C) the movement of the moveable support structure. In one embodiment, one of the write/read mechanism and the storage medium is carried by the positionable support structure so that it is positioned with the first positioning assembly. The other one of the write/read mechanism and the storage medium is positioned with the second positioning assembly. In another embodiment, the positionable support structure carries the second positioning assembly and one of the write/read mechanism and the storage medium is positioned with the second positioning assembly while the other is held stationary. In several embodiments, the read/write mechanism is used to mechanically write data to and electrically read data from the storage medium. In still another embodiment, the read/write mechanism is used to optically write data to and electrically read data from the storage medium. In yet another embodiment, the read/write mechanism is acoustically aided in electrically writing data to and reading data from the storage medium.
摘要:
A scanning tunneling atom-probe microscope and method for identifying atoms at an identified site on a sample surface involves first identifying the atoms of interest on the sample surface in images formed by a conventional scanning tunneling microscope. These atoms are then transferred to the tip of the scanning tunneling microscope. The sample is then removed, and the atoms ejected from the tip into a conventional time-of-flight spectrometer. By measuring the time of flight of the atoms from the tip to a channel-plate ion detector, the atomic number of the atoms may be determined.
摘要:
A system for transporting in a vacuum chamber sample holders and samples between a holder tray and a location for use with a surface analytical instrument is disclosed. Also provided is a system including a microwave coaxial cable connecting the tip terminal of a scanning tunneling microscope to a microwave signal source and a system for clamping a heater to a sample holder in order to heat the sample.
摘要:
The scanning probe microscope translation apparatus includes a scanning probe microscope for examining a specimen, with a specimen stage for mounting the specimen for examination by the scanning probe microscope, and a first translator mounted to the scanning probe microscope for translating the specimen stage relative to the scanning probe microscope. A support frame is dimensioned and adapted to be mounted in a specimen chamber of a scanning electron microscope, and a second translator is provided for scanning the scanning probe microscope relative to the support frame. The second translator is mounted on dual mass plates provided for isolating the scanning probe microscope from external vibrations, and suspension device are provided for suspending the mass plates from the support frame. A vacuum load lock system permits moving the scanning probe microscope, specimen stage, first translator, and mounting assembly into and out of the vacuum of the scanning electron microscope vacuum chamber.
摘要:
A scanning probe microscope having numerous advantages is disclosed. Respective scanning force and scanning tunneling probes are removably mounted in the head using kinematic mounting techniques so that they may be substituted for one another without the need to adjust the cantilever deflection sensor. A linear position-sensitive photodetector in the deflection sensor eliminates further the need for adjustments. A motorized, non-stacked x,y coarse movement stage is kinematically positioned with respect to the base and features a minimized mechanical loop to reduce thermal and vibrational effects on the position of the sample. A z coarse movement stage positions the head kinematically with respect to the base and includes a motorized drive means which allows the height, tilt and pitch of the probe to be adjusted. The scanner includes x,y and z sample position detectors which provide an accurate measurement of the position of the sample with respect to the probe. The z position detector provides an output which is exclusive of sample tilt and which may be used as an output of the scanning probe microscope. The outputs of the x,y and z position detectors may also be connected in feedback loops with the controller to improve the performance of the scanning probe microscope.