Abstract:
An apparatus and method for synthesis and screening of materials are disclosed. According to one aspect of the present invention, a parallel batch reactor for effecting chemical reactions includes a pressure chamber, an inlet port, two or more reaction vessels within the pressure chamber, and a reaction vessel cover. The inlet port is in fluid communication with the pressure chamber, and pressurizes the pressure chamber from an external pressure source. Each of the two or more reaction vessels are in isolatable fluid communication with the pressure chamber such that during a first pressurizing stage of operation, each of the two or more reaction vessels can be simultaneously pressurized through common fluid communication with the pressure chamber. In addition, during at least a second reaction stage of operation, each of the two or more pressurized reaction vessels can be isolated from each other by positioning the reaction vessel cover appropriately.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
A method of optimising a reaction in a microreactor. Two reaction fluids A, B as supplied to a microchannel 6 and their relative proportions are varied in a controlled manner. A sensor 13 monitors a reaction characteristic and determines the relative proportion of the fluids which optimises the yield of the reaction product. The total flow rate can also be varied at the optimum relative proportion in order to determine the maximum overall flow rate at which completion of the reactions still occurs.
Abstract:
The present invention provides devices, systems, and methods of manifolding or distributing materials to and/or from reaction wells of multiple reaction blocks. Materials are distributed through multiple surfaces of reaction blocks without exposing reaction well contents to external environments. The invention further provides reaction block carriers to array multiple reaction blocks for use in the manifolding devices and systems.
Abstract:
Fluidic methods and devices for conducting parallel chemical reactions are disclosed. The methods are based on the use of in situ photogenerated reagents such as photogenerated acids, photogenerated bases, or any other suitable chemical compounds that produce active reagents upon light radiation. The present invention describes devices and methods for performing a large number of parallel chemical reactions without the use of a large number of valves, pumps, and other complicated fluidic components. The present invention provides microfluidic devices that contain a plurality of microscopic vessels for carrying out discrete chemical reactions. Other applications may include the preparation of microarrays of DNA and RNA oligonucleotides, peptides, oligosacchrides, phospholipids and other biopolymers on a substrate surface for assessing gene sequence information, screening for biological and chemical activities, identifying intermolecular complex formations, and determining structural features of molecular complexes.
Abstract:
A parallel reactor system and method therefor are disclosed. The parallel reactor is used to synthesize and/or screen multiple compounds or materials at the same time. Preferably, open-ended reactor vessels in the parallel reactor allow the pressure therein to remain substantially constant. An injection system delivers a specific mixture of gas to each reactor vessel. Preferably, the gas mixtures are delivered at substantially the same flow rate for some or all reactor vessels.
Abstract:
A cracking tube includes a lining of a fouling resistant and corrosion resistant iron aluminide alloy. The iron aluminide alloy can include 14-32 wt. % Al, at least 2 vol. % transition metal oxides, 0.003 to 0.020 wt. % B, 0.2 to 2.0 wt. % Mo, 0.05 to 1.0 wt. % Zr, 0.2 to 2.0 wt. %Ti, 0.10 to 1.0 wt. % La, 0.05 to 0.2 wt. % C., balance Fe, and optionallynull1 wt. % Cr, and the coefficient of thermal expansion of the iron aluminide alloy is substantially the same as the coefficient of thermal expansion over the temperature range of ambient to about 1200null C. of an outer metal layer. A cracking tube utilizing the iron aluminide alloy can be formed from powders of the iron aluminide alloy by consolidation methods including cold isostatic pressing (CIP), hot isostatic pressing (HIP), reaction synthesis, spraying techniques, or co-extrusion with a second material of the cracking tube.
Abstract:
The general purpose of this invention is to provide an improved apparatus and method of preserving the vulnerable area of a railroad cross tie near the interface of the tie and the tie plate. To attain this purpose the invention provides a thin preservative-bearing gelatinous material that is placed between the cross tie and the tie plate either at the time of the original laying of rail or during any subsequent relaying. No extra equipment is needed and only a negligible amount of labor is required to simply place the gelatinous material on the adzed surface of the cross tie prior to the mounting or remounting of the rail. The presence of the gelatinous material poses absolutely no resistance to the subsequent driving of the spikes into the tie and is thin enough so as not to pose any rail alignment problems. The use of the gelatinous material relies on the moisture found under the tie plate to leach the active ingredients out of the material and help diffuse them throughout the adjacent section of wood. In addition, the unloading and loading of the tie plate by the passing of a train forces moisture into and out of the gelatinous material to further promote the leaching action. The inert components of the gelatinous material are completely biodegradable and will not pose an environmental problem at the end of the material's service life.
Abstract:
A parallel reactor system including a reactor and vessels in the reactor for holding reaction mixtures, and a cannula for introducing fluid reaction material into the vessels. A robot system is operable to insert the cannula into cannula passages in the reactor for delivery of reaction materials, including condensed gases, to respective vessels, and to withdraw the cannula from the cannula passages after delivery. Related methods are also disclosed.
Abstract:
Apparatus and method for sequential injection liquid-liquid extraction analysis. Under the control of a bidirectional precision pump, a stream-selection valve, and a microprocessor, a series of liquid zones is built up in a holding/mixing coil. The liquid zones are transferred from the holding/mixing coil to a separation cell. After phase separation into an extract and a raffinate, the extract is withdrawn from the separation cell and sent to a detector, which determines the amount of a component which was extracted from a sample by an extraction solvent. The principal advantages of this automated technology are elimination of the need for dynamic phase separation; on-line pre-extraction chemical conditioning; a substantial reduction in solvent, reagent, and sample usage; and a similar substantial reduction in waste generation.