Abstract:
A system includes a memory controller and a memory device having a command interface and a plurality of memory banks, each with a plurality of rows of memory cells. The memory controller transmits an auto-refresh command to the memory device. Responsive to the auto-refresh command, during a first time interval, the memory device performs refresh operations to refresh the memory cells and the command interface of the memory device is placed into a calibration mode for the duration of the first time interval. Concurrently, during at least a portion of the first time interval, the memory controller performs a calibration of the command interface of the memory device. The auto-refresh command may specify an order in which memory banks of the memory device are to be refreshed, such that the memory device sequentially refreshes a respective row in the plurality of memory banks in the specified bank order.
Abstract:
A dynamic random access memory (DRAM) array is configured for selective repair and error correction of a subset of the array. Error-correcting code (ECC) is provided to a selected subset of the array to protect a row or partial row of memory cells where one or more weak memory cells are detected. By adding a sense amplifier stripe to the edge of the memory array, the adjacent edge segment of the array is employed to store ECC information associated with the protected subsets of the array. Bit replacement is also applied to defective memory cells. By implementing ECC selectively rather than to the entire array, integrity of the memory array is maintained at minimal cost to the array in terms of area and energy consumption.
Abstract:
Row activation operations within a memory component are carried out with respect to subrows instead of complete storage rows to reduce power consumption. Further, instead of activating subrows in response to row commands, subrow activation operations are deferred until receipt of column commands that specify the column operation to be performed and the subrow to be activated.
Abstract:
A stacked semiconductor device is disclosed that includes a plurality of semiconductor dies. Each die has oppositely disposed first and second surfaces, with pads formed on each of the surfaces. A plurality of through-vias connect respective pads on the first surface to respective pads on the second surface. The through-vias include a first group of through-vias coupled to respective I/O circuitry on the semiconductor die and a second group of through-vias not coupled to I/O circuitry on the semiconductor die. The plurality of semiconductor dies are stacked such that the first group of through-vias in a first one of the plurality of semiconductor dies are aligned with respective ones of at least a portion of the second group of through-vias in a second one of the plurality of semiconductor dies.
Abstract:
A single-ended data transmission system transmits a signal having a signal voltage that is referenced to a power supply voltage and that swings above and below the power supply voltage. The power supply voltage is coupled to a power supply rail that also serves as a signal return path. The signal voltage is derived from two signal supply voltages generated by a pair of charge pumps that draw substantially same amount of current from a power supply.
Abstract:
N out of every M number of refresh commands are ignored (filtered out) by a buffer chip on a memory module. N and M are programmable. The buffer receives refresh commands (e.g., auto-refresh commands) from the command-address channel, but does not issue a proportion of these commands to the DRAMs on the module. This reduces the power consumed by refresh operations. The buffer may replace some auto-refresh (REF) commands with activate (ACT) and precharge (PRE) commands directed to specific rows. These rows may have known ‘weak’ cells that require refreshing more often than a majority of the other rows on the module (or component). By ignoring some auto-refresh commands, and directing some others to specific rows that have ‘weak’ cells, the power consumed by refresh operations can be reduced.
Abstract:
Described are systems and method for protecting data and instructions shared over a memory bus and stored in memory. Independent and separately timed stream ciphers for write and read channels allow timing variations between write and read transactions. Data and instructions can be separately encrypted prior to channel encryption to further secure the information. pad generators and related cryptographic circuits are shared for read and write data, and to secure addresses. The cryptographic circuits can support variable data widths, and in some embodiments memory devices incorporate security circuitry that can implement a shared-key algorithm using repurposed memory circuitry.
Abstract:
A memory module is disclosed that includes a substrate, a memory device that outputs read data, and a buffer. The buffer has a primary interface for transferring the read data to a memory controller and a secondary interface coupled to the memory device to receive the read data. The buffer includes error logic to identify an error in the received read data and to identify a storage cell location in the memory device associated with the error. Repair logic maps a replacement storage element as a substitute storage element for the storage cell location associated with the error.
Abstract:
The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
Abstract:
A clock signal is transmitted to first and second integrated circuit (IC) components via a clock signal line, the clock signal having a first arrival time at the first IC component and a second, later arrival time at the second IC component. A write command is transmitted to the first and second IC components to be sampled by those components at respective times corresponding to transitions of the clock signal, and write data is transmitted to the first and second IC components in association with the write command. First and second strobe signals are transmitted to the first and second IC components, respectively, to time reception of the first and second write data in those components. The first and second strobe signals are selected from a plurality of phase-offset timing signals to compensate for respective timing skews between the clock signal and the first and second strobe signals.