Abstract:
A joint heating system of gas combined cycle and solar power and a dispatching method thereof, the user adopts two ways of the hot water radiator and the heat pump to supply heat, wherein the hot water comes from the gas combined cycle units, the electric power comes from the combination of the gas combined cycle units and the solar power generation units, and after detecting the power supplying and power consumption of the user in a historical time period by the comprehensive dispatching and controlling device, a future time period is predicted, and then dispatching is processed on the basis.
Abstract:
In one embodiment, a method includes generating a first signal based on a clock signal and generating a second signal based on a programmable delayed clock signal. The method then generates a reset signal based on the first signal and the second signal. The clock signal is delayed using an inverter chain to generate a delayed version of the clock signal. An output signal is generated based on the delayed version of the clock signal and the reset signal. When a pulse width of the output signal is greater than a data duration determined from the clock signal, the pulse width of the output signal is reset to the pulse width of the data duration.
Abstract:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
Abstract:
The invention provides a method of forming a film stack on a substrate, comprising performing a silicon containing gas soak process to form a silicon containing layer over the substrate, reacting with the silicon containing layer to form a tungsten silicide layer on the substrate, depositing a tungsten nitride layer on the substrate, subjecting the substrate to a nitridation treatment using active nitrogen species from a remote plasma, and depositing a conductive bulk layer directly on the tungsten nitride layer.
Abstract:
Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.
Abstract:
A method for real-time monitoring thin film deposition using a dynamic interferometer is revealed. An optical monitoring extracting the temporal phase change of the reflection coefficient of the deposition film stacks. The dynamic interferometer, which gets rid of the influence of vibration and air turbulence, was used in the method to directly detect fluctuating phase of a deposition film stack. Combing with the reflectance or transmittance measurements, the real-time reflection coefficient under normal incidence of monitoring light can be found as well as optical admittance for enhancing the error compensation of the thin film deposition.
Abstract:
A method for measuring the film element using optical multi-wavelength interferometry is revealed. The invention uses reflection coefficients of thin films at different wavelengths to measure the thickness and optical constants of thin films. The phase difference coming from the phase difference between test and reference surfaces is distinguished from the phase difference from the spatial path difference between reference and test beams by doing measurements on different wavelengths, because they change in different ways as the measuring wavelength changes. The phase is then acquired. Combining with the measured reflectance of thin film, the reflection coefficient of thin film is obtained. Collecting the reflection coefficients of each point, the thin film thickness and optical constants distribution in 2 dimensions are calculated. The surface profile is known through the spatial path differences between reference and test beams. These can be measured in a interferometer to avoid the vibration influence.
Abstract:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
Abstract:
The present invention discloses a backsheet of a solar cell. The backsheet of a solar cell comprises, sequentially from bottom to top, a bottom plastic layer, at least a first insulating layer, a conductive water-proof layer, at least a second insulating layer formed on the conductive water-proof layer, and a weather-resistant layer formed on the second insulating layer. The voltage-resistant ability of the weather-resistant layer is usually about one-third of that of the ordinary insulating layer and the weather-resistant layer is usually has the problem of pinhole which usually results in the defect of arc fail. Therefore, the second insulating layer, in the present invention, deposited between the conductive water-proof layer and the weather-resistant layer, can increase the voltage-resistant ability of the weather-resistant layer and to prevent the pinhole and the arc fail problem.