摘要:
The invention is a retinal prosthesis with an improved configuration mounting necessary components within and surrounding the eye. The present invention better allows for the implantation of electronics within the delicate eye structure. The invention further limits the necessary width of a thin film conductor passing through the sclera by use of a multiplexer external to the sclera and a demultiplexer internal to the sclera.
摘要:
The present application deals generally with the stimulation of neural tissue by electronic means and specifically with controlling the level of electrical stimulation in order to prevent damage to the neural tissue. Methods presented in the disclosure include detecting current leakage via electrode impedance measurement, electrode capacitance measurement, and testing the electrode response to a test current pulse. Apparatus presented in the disclosure include circuitry and systems capable of performing the methods disclosed.
摘要:
Methods and devices for fitting a visual prosthesis are described. In one of the methods, threshold levels and maximum levels for the electrodes of the prosthesis are determined and a map of brightness to electrode stimulation levels is later formed. A fitting system for a visual prosthesis is also discussed, together with a computer-operated system having a graphical user interface showing visual prosthesis diagnostic screens and visual prosthesis configuration screens.
摘要:
The present invention is a surgical tool for implanting an electrode array and its connected cable within an orbital socket. The insertion tool is used to aid the surgeon in pulling the electrode wire and array through the scull, four-rectus muscles of the eye, and the sclera. The insertion tool consists of a medical grade ABS material that is commonly used in various medical products.
摘要:
In order to generate the smallest phosphenes possible, it is advantageous to selectively stimulate smaller cells. By hyperpolarizing the somas of the large cells selectively with sub-threshold anodic ‘pre-pulse’ stimuli (making them more difficult to stimulate) and then selectively depolarize the smaller cells one can selectively stimulate smaller cells. Alternatively, one can hyperpolarize the dendrites of the cells with larger dendritic fields by applying sub-threshold anodic currents on surrounding electrodes and then depolarizing the smaller cells in the center. Further, one can manipulate the phases of an individual biphasic wave to affect selective stimulation resulting in more focal responses. It is possible to increase resolution with the ‘pre-pulse’ described above. One can also effect resolution by modifying the pulse order of the cathodic and anodic phases. Further, one can isolate the effect of the phases by separating them in time (long inter-phase interval) or by making one of the phases long and low amplitude—always keeping equal total charge for the two phases. As an example, one can preferentially stimulate smaller ganglion cells by providing a longer sub-threshold anodic pulse balanced with a shorter supra-threshold cathodic pulse. Preferentially stimulating the smaller ganglion cells will allow stimulation of different brightness levels while maintaining high spatial resolution.
摘要:
The present invention includes fully human, neutralizing, monoclonal antibodies against human Insulin-like Growth Factor Receptor-I (IGFR1). The antibodies are useful for treating or preventing cancer in a subject. Also included are methods of using and producing the antibodies of the invention.
摘要:
Applicant has proposed a combination of the subretinal and epiretinal methods by placing the electronics external to the eye, entering the eye through the pars plana and the piercing the retina (retinotomy) from inside the eye to stimulate subreintally. The present invention is an improved electrode array for subretinal stimulation. A hard polymer such as polyimide is biocompatible and strong for supporting an electrode array and supporting traces in a thin flex circuit array. In the present invention applicant takes advantage of the sharp nature of thin polyimide making a point on the end of the electrode array. This allows the flexible circuit electrode array to be both electrode array and surgical tool to cut the retinal and slide the array under the retina in a single action.
摘要:
A method and apparatus for adjusting a visual image provided to a patient. In one embodiment, an image may be presented to the patient to obtain the patient's subjective perception of the image, and the patient may either manipulate the image to obtain a desired adjustment, or guide a clinician performing the adjustment. In another embodiment, the clinician may make objective observations of, for example, the position of an electrode array on the patient's retina, and make adjustments accordingly. The adjustment may be a spatial adjustment comprising a re-mapping performed to decreases image distortion resulting from differences in the patient's perception of stimulation of different areas of the retina. Such distortion may result from differences between the patient's perception of stimulation falling within the macula, and stimulation falling within the periphery surrounding the macula. The adjustment may also compensate for translations or rotations of the electrode array on the retina.
摘要:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
摘要:
Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced. With a thermoplastic polymer it may be further advantageous to repeatedly heat the flexible circuit in multiple molds, each with a decreasing radius. Further, it is advantageous to add material along the edges. It is further advantageous to provide a fold or twist in the flexible circuit array. Additional material may be added inside and outside the fold to promote a good seal with tissue.