Abstract:
A transport tool for transporting a laboratory article using a pipette of a pipetting system and having a plug-in sleeve at a top end, an article holder at a bottom end, and a connecting part which connects the plug-in sleeve to the article holder. The plug-in sleeve has a side sleeve wall and a bottom which surround an interior space of the plug-in sleeve having a cylindrical and conically tapering shape. The plug-in sleeve further has an upward-facing opening for receiving an end of a pipette of an automated pipetting system. The connecting part has a top surface which defines the bottom of the plug-in sleeve, is positioned between the interior space of the plug-in sleeve and the article holder. The article holder has a holding plate which is flat and faces downward away from the plug-in sleeve, and further has a flatly acting magnet on the holding plate.
Abstract:
The invention relates to a device (100) having multiple capacitively working channels, wherein the device (100) comprises a advancable sensor (3.1, 3.2) and a fluid container per channel. The device (100) also comprises a generator (G) for providing a periodic input signal (s,in(t)). In addition, the device (100) comprises one compensation circuit (CT.1, CT.2) per channel, which can be supplied with the periodic input signal (Sin(t)) and which is designed to provide an input signal (Sin1(t), Sin2(t)) at a first output (A.1, A.2) for applying to the sensor (3.1, 3.2) of the channel, wherein the compensation circuit (CT.1, CT.2) comprises a further output (6.1, 6.2) which is designed to provide a signal (s1(t), s2(t)) that can be evaluated to detect a phase boundary.
Abstract:
Aspiration of a pipette arrangement is initiated. A sensor arrangement senses a least one prevailing first parameter that is dependent from the effect in the pipette arrangement during initiating and upholding the suctioning action. This at least one parameter is analyzed in an analyzing stage. From a result of this analysis and in a determining stage at least one test criterium TC for at least one further parameter as sensed by the sensor arrangement is determined. In a checking stage there is checked whether this further parameter fulfills the at least one test criterium.
Abstract:
Microplate reader has measuring space, action source, measuring device for biological structure signals of microplate wells, transport support for positioning wells in relation to an optical axis of the device and controller for the action source, the measuring device and the transport support. An incubation apparatus with a frame accommodates a microplate with wells having bottoms for reducing liquid evaporation. The frame has a first opening surrounded by an inner wall for the microplate and an outer wall parallel to the inner wall and connected thereto by an intermediate bottom so that a channel is formed and the intermediate bottom for accommodating a liquid adjusted to the content of the microplate wells. The incubation apparatus has a support surface with a second opening for a microplate and, as a result, at least a portion of the well bottoms is freely accessible by the second opening.
Abstract:
A disposable cartridge used in a digital microfluidics system has a bottom layer with first hydrophobic surface, a rigid cover plate with second hydrophobic surface, and a gap there-between. The bottom layer is a flexible film on an uppermost surface of a cartridge accommodation site of a system, attracted to and spread over the uppermost surface by an underpressure. A lower surface of the plate and the flexible bottom layer are sealed to each other. The assembled cartridge is removed from the cartridge accommodation site in one piece and potentially includes samples and processing fluids. The system has a base unit and a cartridge accommodation site with an electrode array of individual electrodes and a central control unit for controlling selection of individual electrodes and for providing these electrodes with individual voltage pulses for manipulating liquid droplets within the gap by electrowetting.
Abstract:
A cartridge has a container with at least one well, protrusions distributed on the container base side, and a flat polymer film having a lower surface and a hydrophobic upper surface kept at a distance (d) to the container base side by the protrusions. The container and the film are reversibly attachable to a liquid droplet manipulation instrument so that the lower surface of the film abuts at least one electrode array of the instrument. The container enables displacement of at least one liquid droplet from a well onto the hydrophobic upper surface of the flat polymer film and above the electrode array. The liquid droplet manipulation instrument comprises a control unit with a voltage control and an electrode selector for individually selecting each electrode of the electrode array and for providing the selected electrode with a voltage and thus controlling a guided movement of a liquid droplet on the hydrophobic upper surface of the flat polymer film by electrowetting. Also disclosed are a corresponding kit and method.
Abstract:
Laboratory table with front and opposite rear frame parts, has replaceable tabletop elements positionable thereon. In a first variant, the laboratory table further has detent openings at regular distances on the front and/or rear frame parts, defining a modular grid. Each opening can receive a detent bolt of a modular tabletop element, each element having at least two detent bolts for the insertion into one of the detent openings. In a second variant, each tabletop element has at least one detent opening on a front and/or rear side of the tabletop element, for insertion of a detent bolt. The front and/or rear frame part of the laboratory table have detent bolts arranged at a regular distance defining a modular grid, each one of the detent bolts being for insertion into one of the detent openings of the tabletop elements positioned on these front and rear frame parts.
Abstract:
Optical measuring apparatus for analysis of samples contained in liquid drops includes a liquid handling system with at least one liquid handling tip. The apparatus has a light source for irradiating the drop, a detector for measuring sample light, an optics system with first optical elements for transmitting irradiation light, and a processor for processing measurement signals. The drop is suspended at the liquid handling orifice of the tip in a position where the drop is penetrated by a first optical axis defined by the light source and the first optical elements. The drop is physically touched only by the liquid handling tip and the liquid sample inside the tip. The tip is attached to a robot arm which adjusts the position of the liquid drop with respect to at least one optical element of the optics system.
Abstract:
An inlet valve charges an inner chamber with liquid and has a first axis and an inlet opening with a tool that automatically recloses. The inlet valve has a valve body with a blocking element, and a pressing part; a valve space enclosing the valve body at least partly; a spring mechanism and a sealing element. An open passage region opens into the liquid passage of the pressing part and into the valve space. The spring mechanism presses a sealing surface of the blocking element against the sealing element in a closed position of the valve body. The valve body of the inlet valve can be brought to an open position by pressing the pressing part against the resistance of the spring mechanism. Chamber systems and sample containers with such inlet valves are also disclosed.
Abstract:
The invention relates to a microplate reader and a respective method, wherein the microplate reader comprises at least one measuring device and a holding device for accommodating at least one microplate and for positioning the samples-containing wells of this(these) microplate(s) in relation to the at least one measuring device. The at least one measuring device is used for detecting light which is emitted by samples in wells of a microplate inserted in this microplate reader and/or which is influenced by samples transilluminated by light in wells of a microplate inserted in this microplate reader. The microplate reader comprises a control unit for controlling the temperature of a gas atmosphere surrounding the wells containing the samples of microplates used in this microplate reader.