Abstract:
A method of fabricating an object by additive manufacturing includes forming a green part by successively forming a plurality of layers of the green part, and processing the green part to fuse the powder into a solid mass. For each layer of the green part, a layer of powder is dispensed onto a build area on a platform, wherein the selective dispensing covers less than all of the build area, a binder material is selectively dispensed onto the layer of powder to form a combined layer of powder and binder material, and radiation is directed toward the platform so as to solidify the binder material to form a layer of the plurality of layers of the green part in which the powder is held by the solidified binder material.
Abstract:
An additive manufacturing apparatus includes a platform, one or more supports positioned above the platform, an actuator, a first dispenser system configured dispense a plurality of successive layers of powder onto a build area supported by the platform, a first binder material dispenser configured to selectively dispense a first binder material on a voxel-by-voxel basis to an uppermost layer of powder in the build area, and an energy source configured to emit radiation toward the platform so as to solidify the binder material. The first dispenser system includes a first powder dispenser that is attached to and moves with a first support from the one or more supports and is configured to selectively dispense a first powder onto the build area, and a second powder dispenser that is configured to selectively dispense the second powder onto the build area.
Abstract:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a dispenser to deliver a plurality of successive layers of precursor material over the platen, a plurality of lamps disposed below the top surface of the platen to heat the platen, and an energy source to fuse at least some of the outermost layer of precursor material.
Abstract:
An additive manufacturing system includes a platen to support an object being manufactured, a dispenser to deliver a plurality of successive layers of a powder over the platen, and energy source configured to fuse at least a portion of the powder. The dispenser is configured to deliver the powder in a linear region that extends along a first axis. The dispenser and actuator are supported by a support structure, and the actuator is coupled to the support structure to move the support structure along a second axis perpendicular to the first axis such that the dispenser and energy source move as a single unit with the support structure and the linear region sweeps along the second axis to deposit the powder along a swath over the platen to form a layer of powder.
Abstract:
An apparatus for positioning micro-devices on a substrate includes one or more supports to hold a donor substrate and a destination substrate, an adhesive dispenser to deliver adhesive on micro-devices on the donor substrate, a transfer device including a transfer surface to transfer the micro-devices from the donor substrate to the destination substrate, and a controller. The controller is configured to operate the adhesive dispenser to selectively dispense the adhesive onto selected micro-devices on the donor substrate based on a desired spacing of the selected micro-devices on the destination substrate. The controller is configured to operate the transfer device such that the transfer surface engages the adhesive on the donor substrate to cause the selected micro-devices to adhere to the transfer surface and the transfer surface then transfers the selected micro-devices from the donor substrate to the destination substrate.
Abstract:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a dispenser to deliver a plurality of successive layers of feed material over the platen, an energy source positioned above the platen to direct a beam to fuse at least some of an outermost layer of feed material, and a plurality of lamps disposed above the platen and around the energy source to radiatively heat the outermost layer of feed material.
Abstract:
An additive manufacturing apparatus for forming a part includes a support, a first dispenser to deliver a layer of first particles on a support or an underlying layer on the support, a second dispenser to deliver second particles onto the layer of first particles such that the second particles infiltrate into the layer of first particles, an energy source to fuse the first particle and second particles to form a fused layer of the part, and a controller coupled to the first dispenser, second dispenser and energy source.
Abstract:
A method for manufacturing micro-LED displays includes depositing a first material over a substrate having a plurality of micro-LEDs such that the plurality of micro-LEDs are covered by the first material and the first material fills gaps laterally separating the micro-LEDs, removing a portion of the first material from the gaps that laterally separate the plurality of micro-LEDs to form trenches that extend to or below light-emitting layers of the micro-LEDs, depositing a second material over the substrate such that the second material covers the first material and extends into the trenches, and removing a portion of the first and second material over the plurality of micro-LEDs to expose top surfaces of the plurality of micro-LEDs and such that isolation walls positioned in the gaps between the plurality of micro-LEDs extend vertically higher than the top surface of the first material.
Abstract:
A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a color conversion layer over each of a plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array.
Abstract:
Exemplary semiconductor structures may include a plurality of LED structures and a backplane layer. Exemplary semiconductor structures may also include a light barrier region positioned between the LED structures and the backplane layer. The light barrier region may be operable to absorb light at wavelengths shorter than or about 300 nm and transmit light at wavelengths greater than or about 350.