Abstract:
When forming sophisticated P-channel transistors, a semiconductor alloy layer is formed on the surface of the semiconductor layer including the transistor active region. When a metal silicide layer is formed contiguous to this semiconductor alloy layer, an agglomeration of the metal silicide layer into isolated clusters is observed. In order to solve this problem, the present invention proposes a method and a semiconductor device wherein the portion of the semiconductor alloy layer lying on the source and drain regions of the transistor is removed before formation of the metal silicide layer is performed. In this manner, the metal silicide layer is formed so as to be contiguous to the semiconductor layer, and not to the semiconductor alloy layer.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided herein. In an embodiment, a method for fabricating an integrated circuit includes forming over a semiconductor substrate a gate structure. The method further includes depositing a non-conformal spacer material around the gate structure. A protection mask is formed over the non-conformal spacer material. The method etches the non-conformal spacer material and protection mask to form a salicidation spacer. Further, a self-aligned silicide contact is formed adjacent the salicidation spacer.
Abstract:
In a sophisticated semiconductor device, FINFET elements may be provided with individually accessible semiconductor fins which may be connected to a controllable interconnect structure for appropriately adjusting the transistor configuration, for instance with respect to current drive capability, replacing defective semiconductor fins and the like. Consequently, different transistor configurations may be obtained on the basis of a standard transistor cell architecture, which may result in increased production yield of highly complex manufacturing strategies in forming non-planar transistor devices.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a structure having an n-channel gate stack and a p-channel gate stack formed over a semiconductor substrate. The method includes forming halo implant regions in the semiconductor substrate adjacent the p-channel gate stack and forming extension implant regions in the semiconductor substrate adjacent the p-channel gate stack. The method further includes annealing the halo implant regions and the extension implant regions in the semiconductor substrate adjacent the p-channel gate stack. Also, the method forms extension implant regions in the semiconductor substrate adjacent the n-channel gate stack.
Abstract:
The present disclosure provides, in accordance with some illustrative embodiments, a method of forming a semiconductor device, the method including providing an SOI substrate with an active semiconductor layer disposed on a buried insulating material layer, which is in turn formed on a base substrate material, forming a gate structure on the active semiconductor layer in an active region of the SOI substrate, partially exposing the base substrate for forming at least one bulk exposed region after the gate structure is formed, and forming a contact structure for contacting the at least one bulk exposed region.
Abstract:
A method of forming a semiconductor device comprising a fuse is provided including providing a semiconductor-on-insulator (SOI) structure comprising an insulating layer and a semiconductor layer formed on the insulating layer, forming raised semiconductor regions on the semiconductor layer adjacent to a central portion of the semiconductor layer and performing a silicidation process of the central portion of the semiconductor layer and the raised semiconductor regions to form a silicided semiconductor layer and silicided raised semiconductor regions.
Abstract:
A semiconductor device includes an active region formed in a semiconductor substrate, a gate structure disposed over the active region, source/drain regions formed in the active region in alignment with the gate structure, and a buried insulating material region disposed in the active region under the gate structure. The buried insulating material region is surrounded by the active region and borders a channel region in the active region below the gate structure along a depth of the active region. The source/drain regions have a depth greater than a top surface of the buried insulating material region.
Abstract:
A semiconductor device structure includes an active region positioned in a semiconductor substrate and a gate structure of a transistor positioned above the active region. The gate structure includes a gate insulating layer, a gate metal layer positioned above the gate insulating layer and a trimmed gate electrode material layer positioned above the gate metal layer. A length of at least a portion of the trimmed gate electrode material layer in a gate length direction of the transistor is less than a length of at least the gate metal layer in the gate length direction.
Abstract:
The present disclosure provides, in a first aspect, a semiconductor device including an SOI substrate portion, a gate structure formed on the SOI substrate portion and source and drain regions having respective source and drain height levels, wherein the source and drain height levels are different. The semiconductor device may be formed by forming a gate structure over an SOI substrate portion, recessing the SOI substrate portion at one side of the gate structure so as to form a trench adjacent to the gate structure and forming source and drain regions at opposing sides of the gate structure, one of the source and drain regions being formed in the trench.
Abstract:
The present disclosure provides, in a first aspect, a semiconductor device, including a semiconductor substrate and a gate structure formed over the semiconductor substrate, wherein the gate structure comprises a fin and a ferroelectric high-k material formed at least over sidewall surfaces of the fin. Herein, a first thickness defined by a thickness of the ferroelectric high-k material formed over sidewalls of the fin is substantially greater than a second thickness defined by a thickness of the ferroelectric high-k material formed over an upper surface of the fin.