摘要:
Noise reduction is performed on the basis of characteristics of an image in a detection range. A noise reduction block 4′ performs a second-order differentiation process and a symmetry process to decide adjacent pixels with which noise reduction is preformed for an attention pixel. With the pixel level of the attention pixel in the detection range and the pixel levels of adjacent pixels used for noise reduction, an arithmetic mean processing section 16 calculates a mean value. A median filter 17 selects a median value. With the number of pixels used for noise reduction, it is determined whether the image in the detection range contains a flat portion, a ramp portion, or an edge. The mean value and the median value are weight-added with a weighted coefficient that are changed on the basis of characteristics of the image. The result is substituted for the level of the attention pixel. When the attention pixel is an isolated point, an all-pixel median filter section 31 selects a medium value of the levels of all the pixels in the detection range including the attention pixel and substitutes the median value for the level of the attention pixel.
摘要:
A method of replacing a top oxide around a storage element of a memory device is provided. The method can involve removing a core first poly and core first top oxide in a core region while not removing a periphery first poly in a periphery region on a semiconductor substrate; forming a second top oxide around a storage element in the core region and on the periphery first poly in the periphery region; forming a second poly over the semiconductor substrate in both the core and periphery regions; removing the second poly and second top oxide in the periphery region; and forming a third poly on the semiconductor substrate in both the core and periphery regions.
摘要:
According to one exemplary embodiment, a structure in a semiconductor die comprises a metal pad situated in an interconnect metal layer, where the metal pad comprises copper. The structure further comprises an interlayer dielectric layer situated over the metal pad. The structure further comprises a terminal via defined in the interlayer dielectric layer, where the terminal via is situated on the metal pad. The terminal via extends along only one side of the metal pad. The structure further comprises a terminal metal layer situated on the interlayer dielectric layer and in the terminal via. The structure further comprises a dielectric liner situated on the terminal metal layer, where a bond pad opening is defined in the dielectric liner, and where the bond pad opening exposes a portion of the terminal metal layer. The interlayer dielectric layer is situated between the exposed portion of the terminal metal layer and metal pad.
摘要:
A drain (7) includes a lightly-doped shallow impurity region (7a) aligned with a control gate (5), and a heavily-doped deep impurity region (7b) aligned with a sidewall film (8) and doped with impurities at a concentration higher than that of the lightly-doped shallow impurity region (7a). The lightly-doped shallow impurity region (7a) leads to improvement of the short-channel effect and programming efficiency. A drain contact hole forming portion (70) is provided to the heavily-doped impurity region (7b) to reduce the contact resistance at the drain (7).
摘要:
Disclosed are a diboride single crystal substrate which has a cleavage plane as same as that of a nitride compound semiconductor and is electrically conductive; a semiconductor laser diode and a semiconductor device using such a substrate and methods of their manufacture wherein the substrate is a single crystal substrate 1 of diboride XB2 (where X is either Zr or Ti) which is facially oriented in a (0001) plane 2 and has a thickness of 0.1 mm or less. The substrate 1 is permitted cleaving and splitting along a (10-10) plane 4 with ease. Using this substrate to form a semiconductor laser diode of a nitride compound, a vertical structure device can be realized. Resonant planes of a semiconductor laser diode with a minimum of loss can be fabricated by splitting the device in a direction parallel to the (10-10) plane. A method of manufacture that eliminates a margin of cutting is also realized.
摘要:
SiC single crystal that includes a first dopant functioning as an acceptor, and a second dopant functioning as a donor is provided, where the content of the first dopant is no less than 5×1015 atoms/cm3, the content of the second dopant is no less than 5×1015 atoms/cm3, and the content of the first dopant is greater than the content of the second dopant. A manufacturing method for silicon carbide single crystal is provided with the steps of: fabricating a raw material by mixing a metal boride with a material that includes carbon and silicon; vaporizing the raw material; generating a mixed gas that includes carbon, silicon, boron and nitride; and growing silicon carbide single crystal that includes boron and nitrogen on a surface of a seed crystal substrate by re-crystallizing the mixed gas on the surface of the seed crystal substrate.
摘要:
According to one exemplary embodiment, a method for forming a contact over a silicide layer situated in a semiconductor die comprises a step of depositing a barrier layer on sidewalls of a contact hole and on a native oxide layer situated at a bottom of the contact hole, where the sidewalls are defined by the contact hole in a dielectric layer. The step of depositing the barrier layer on the sidewalls of the contact hole and on the native oxide layer can be optimized such that the barrier layer has a greater thickness at a top of the contact hole than a thickness at the bottom of the contact hole. According to this exemplary embodiment, the method further comprises a step of removing a portion of the barrier layer and the native oxide layer situated at the bottom of the contact hole to expose the silicide layer.
摘要:
A method of fabricating a planar architecture charge trapping dielectric memory cell array with rectangular gates comprises fabricating a multi-layer charge trapping dielectric on the surface of a substrate. The layer adjacent to the substrate may be an oxide. A polysilicon layer is deposited over the charge trapping dielectric. A word line mask is applied over the polysilicon layer to mask linear word lines in a first direction and to expose trench regions there between and the trenches are etched to expose the charge trapping dielectric in the trench regions. A bit line mask is applied over the polysilicon layer to mask gates in a second direction perpendicular to the first direction and to expose bit line regions there between and the bit lines are etched to expose the oxide in the bit line regions. The bit lines are implanted and insulating spacers are fabricated on exposed sidewalls. The oxide is removed to expose the substrate between insulating spacers in the bit line regions and a conductor is fabricated thereon to enhance conductivity of each bit line.
摘要:
The present invention relates to a sapphire monocrystalline body to be used as the substrate for a semiconductor for electronic parts or component parts, and to a monocrystalline sapphire substrate. The invention also relates to a method for working the same. The invention is based cleavage along the plane R of the sapphire monocrystalline body which cleavage is easy to accomplish and provides a surface high in precision. The inventive process includes forming linear crack parallel or vertical to a reference plane of the substrate, with a microcrack line as a starting point, to develop a crack in a thickness direction of the body.
摘要:
A bridge that can effectively use plural paths by restricting a single path by a spanning tree algorithm, thus preventing that a broadcast packet is circulated in a looped communication path when two neighbor brides configuring a spanning tree are physically connected with plural paths. The bridge incorporates a correspondence table for the correspondence between the transmission source Mac address and the transmission destination port of a packet. A transmission source Mac address registration section decides the transmission destination port of a packet to be transmitted from the port to other bridge. The transmission destination port is cataloged on the table. When the transmission packet is a broadcast packet or BPDU packet, it is divided to a specific port among ports of the bridge. Other packets are divided to the corresponding ports by referring to the content cataloged on the table. Thus all the paths can be effectively used.