Abstract:
A vehicle includes an inductive charge coupling arrangement that can be electrically connected with a traction battery. The arrangement includes a charge coil and a plurality of permeable panels surrounding the charge coil. The vehicle further includes at least one controller that, in response to an inductive charge request, causes the panels to move to positions selected to minimize electromagnetic field leakage between the charge coil and a charge station.
Abstract:
An energy supply system for supplying at least first and second components of a motor vehicle with electrical energy. The energy supply system is arranged in the motor vehicle and has a charging socket (60). At least the first component an energy store and at least the second component is a consumer. The at least one first component has a first electrical voltage and the at least one second component has a second electrical voltage. To carry out a charging mode, the motor vehicle is connected via the charging socket (60) to a charging station with which current which either has the first or the second electrical voltage is to be made available. A first charging mode, a second charging mode and a travel mode of the motor vehicle can be carried out with the energy supply system (52).
Abstract:
A charging device for use with an electric vehicle including a power storage device. The charging device includes a power conduit configured to electrically couple the power storage device to the charging device. The charging device includes a first protection device configured to electrically isolate the charging device from the power storage device if a current flowing through the power conduit exceeds a current limit. The charging device also includes a controller configured to control the current flowing through the power conduit if the current flowing through the power conduit causes an integration threshold to be exceeded, wherein the integration threshold is representative of a predetermined amount of current that is enabled to flow through the power conduit over a predetermined period of time.
Abstract:
A contact charging circuit composed of a charging inlet and a charger receives electric power from an outside power source via a charging cable. A non-contact charging circuit composed of a power reception unit, a rectifier, and a sensor unit receives electric power from an outside power source in a non-contact manner. A first communication device communicates contact charging information about power reception by the contact charging circuit with a third communication device of a power supply apparatus. A second communication device communicates non-contact charging information about power reception by the non-contact charging circuit with a fourth communication device of the power supply apparatus.
Abstract:
A method for aligning a vehicle at a charging station may include determining the distance between each sensor of the plurality of sensors and a target surface of the charging station. The method may further include aligning the vehicle at the charging station using the determined distance data, and charging the electric vehicle at the charging station. The method may further include using the determined distances to align the side of the vehicle substantially parallel to the target surface.
Abstract:
A power supply device supplies power from a power transmission coil to a power reception coil of a vehicle in a non-contact manner. The power supply device has a communication unit that receives a startup signal for activating the power supply device. A notification unit notifies a state of the power supply device. A controller controls the notification unit based on a detection result of a detection unit. The detection unit detects a non-contact power supply possible state, in which power can be supplied from the power transmission coil in a non-contact manner. The controller sets a notification state of the notification unit to a first notification state, when the non-contact power supply possible state is detected, and sets the notification state of the notification unit to a state that is different from the first notification state, when the non-contact power supply possible state is not detected.
Abstract:
A method for efficient fuel consumption comprises recharging batteries or operating a device carrying out a task, with an engine through an electrical connection. The method also includes monitoring at least one of (i) current in the electrical connection, (ii) voltage of the batteries, and (iii) length of time of the recharging or task, to determine if the recharging has reach a preselected endpoint or the task has been completed. The method further includes generating a signal through a communication link to cause the engine to stop operating by: (a) preventing operation of a spark plug, (b) preventing delivery of fuel to the engine, or (c) preventing delivery of oxygen to the engine.
Abstract:
PROBLEM:In management system of electric vehicle charging stands, to provide added-value services such as addressing emergency charging needs of the drivers, without overly increasing the complexity of the charging controllers.SOLUTION:Charging controllers equipped with an identification tag, mobile phones with an identification tag reader, and a management server of the charging controllers are connected via the network as the system to provided various added-value services without overly increasing the complexity of the charging controllers.
Abstract:
Provided herein are systems and method for autonomously or semi-autonomously landing an unmanned aerial vehicle (UAV) on a landing pad. The landing pad can include features configured to correct misalignment of the UAV on the landing pad. The landing pad can additionally include one or more markers than can be identified by the UAV to aid the UAV in locating the landing pad and determining the location of the UAV relative to the landing pad.
Abstract:
Vehicle operation (e.g., speed, acceleration) may be limited based on various conditions such as a current charge condition of an electrical energy storage devices (e.g., batteries, super- or ultracapacitors), history of such, conditions related to the vehicle (e.g., mileage, weight, size, drag coefficient), a driver or operator of the vehicle (e.g., history with respect to speed, acceleration, mileage) and/or environmental conditions (e.g., ambient temperature, terrain). A controller may control operation of one or more power converters to limit current and/or voltage supplied to a traction electric motor, accordingly.