Abstract:
A composite laminated ceramic electronic component that includes co-fired low dielectric-constant ceramic layers and high dielectric-constant ceramic layers. The low dielectric-constant ceramic layers and high dielectric-constant ceramic layers are each composed of a glass ceramic containing: a first ceramic composed of MgAl2O4 and/or Mg2SiO4; a second ceramic composed of BaO, RE2O3 (RE is a rare-earth element), and TiO2; glass containing each of 44.0 to 69.0 weight % of RO (R is an alkaline-earth metal), 14.2 to 30.0 weight % of SiO2, 10.0 to 20.0 weight % of B2O3, 0.5 to 4.0 weight % of Al2O3, 0.3 to 7.5 weight % of Li2O, and 0.1 to 5.5 weight % of MgO; and MnO, and the content ratios of the glass, etc. are varied between the low dielectric-constant ceramic layers and the high dielectric-constant ceramic layers.
Abstract translation:一种复合层压陶瓷电子元件,包括共烧低介电常数陶瓷层和高介电常数陶瓷层。 低介电常数陶瓷层和高介电常数陶瓷层各自由玻璃陶瓷组成,该陶瓷含有:由MgAl 2 O 4和/或Mg 2 SiO 4组成的第一陶瓷; 由BaO,RE2O3(RE为稀土元素)和TiO2组成的第二陶瓷; 含有44.0〜69.0重量%的RO(R为碱土金属),14.2〜30.0重量%的SiO 2,10.0〜20.0重量%的B 2 O 3,0.5〜4.0重量%的Al 2 O 3,0.3〜7.5重量% 的Li 2 O和0.1〜5.5重量%的MgO; 和MnO,并且玻璃等的含量比在低介电常数陶瓷层和高介电常数陶瓷层之间变化。
Abstract:
A ceramic electronic component includes a ceramic sintered body and an electrode provided on a surface of the ceramic sintered body. The electrode contains Ag. The ceramic sintered body contain glass material made of borosilicate glass. The glass material has closed pores and open pores therein. The closed pores and the open pores have diameters decreasing as being located away from the surface of the ceramic sintered body. This ceramic electronic component can prevent delamination of the electrode from the ceramic sintered body during a process of firing a green sheet.
Abstract:
A substrate comprising a solid glass core having a first surface and a second surface opposed to the first surface; multiple conductors extending through the solid glass core beginning at the first surface and ending at the second surface, wherein one of the conductors has a third surface and a fourth surface, wherein the third surface and the first surface are substantially coplanar, wherein the second surface and the fourth surface are substantially coplanar, wherein one of the conductors comprise a copper-tungsten alloy material, wherein the solid glass core is directly contact with the conductor; and a first dielectric layer and a first metal layer formed at the first surface, wherein the first metal layer at the first surface is electrically coupled with one of the conductors.
Abstract:
A glass film for a capacitor has a thickness of 50 μm or less and an average surface roughness Ra of 50 Å or less. The glass film for a capacitor also has a dielectric constant at a frequency of 1 MHz of 5 or more and a dielectric dissipation factor at a frequency of 1 MHz of 0.05 or less.
Abstract:
A method of making dense dielectrics layers via chemical solution deposition by adding inorganic glass fluxed material to high dielectric constant compositions, depositing the resultant mixture onto a substrate and annealing the substrate at temperatures between the softening point of the inorganic glass flux and the melting point of the substrate. A method of making a capacitor comprising a dense dielectric layer.
Abstract:
There are provided a method of manufacturing a ceramic sintered body. A method of manufacturing a ceramic sintered body according to one aspect of the invention may include: preparing at least one ceramic sheet having first ceramic particles and glass particles; preparing at least one constraining sheet having second ceramic particles having a smaller particle size than the glass particles and the first ceramic particles; forming a ceramic laminate by alternating the ceramic sheet and the constraining sheet while the ceramic sheet and the constraining sheet are in contact with each other; and sintering the ceramic laminate so that components, which do not react with the first ceramic particles, from the glass particle are moved into the constraining sheet to sinter the constraining sheet when the ceramic sheet is sintered.
Abstract:
There are provided a method of manufacturing a ceramic sintered body. A method of manufacturing a ceramic sintered body according to one aspect of the invention may include: preparing at least one ceramic sheet having first ceramic particles and glass particles; preparing at least one constraining sheet having second ceramic particles having a smaller particle size than the glass particles and the first ceramic particles; forming a ceramic laminate by alternating the ceramic sheet and the constraining sheet while the ceramic sheet and the constraining sheet are in contact with each other; and sintering the ceramic laminate so that components, which do not react with the first ceramic particles, from the glass particle are moved into the constraining sheet to sinter the constraining sheet when the ceramic sheet is sintered.
Abstract:
A manufacturing method of a dielectric device includes steps described below. (1) Mixing step: Powders serving as a matrix and additive powders for sintering the matrix are mixed. (2) Mixture heat-treating step: The mixture of the matrix and the additive that has been subject to the mixing step is heat-treated. (3) Deposition layer formation step: The material powders obtained through the mixture heat-treating step are injected toward a substrate so as to form a deposition layer on the substrate. (4) Deposition layer heat-treating step: The deposition layer formed on the substrate through the deposition layer formation step is heat-treated so as to form the dielectric layer on the substrate.
Abstract:
An electrical component includes a ceramic base body. The ceramic base body includes several ceramic layers including a function layer and a composite layer bordering the function layer. The composite layer can include a zirconium oxide-glass filler mixture.
Abstract:
A low temperature sinterable dielectric ceramic composition is obtained by bending 2.5-20 parts by weight of a glass component per 100 parts by weight of an aggregate of dielectric particles which are composed of Ti-containing dielectric material and contain an oxide including Ti and Zn in the surface portions. A low temperature sintered dielectric ceramic is produced by sintering this low temperature sinterable dielectric ceramic composition at 880 to 1000° C. With this low temperature sinterable dielectric ceramic composition, there can be obtained a multiplayer electronic component having an internal conductor composed of Ag, Cu or an alloy containing at least one of them.