Abstract:
A quantum well infrared photodetector (QWIP) and method of making is disclosed. The QWIP includes a plurality of epi-layers formed into multiple periods of quantum wells, each of the quantum wells being separated by a barrier, the quantum wells and barriers being formed of II-VI semiconductor materials. A multiple wavelength QWIP is also disclosed and includes a plurality of QWIPs stacked onto a single epitaxial structure, in which the different QWIPs are designed to respond at different wavelengths. A dual wavelength QWIP is also disclosed and includes two QWIPs stacked onto a single epitaxial structure, in which one QWIP is designed to respond at 10 μm and the other at 3-5 μm wavelengths.
Abstract:
A photovoltaic device includes a substrate structure and a p-type semiconductor absorber layer, the substrate structure including a CdSSe layer. A photovoltaic device may alternatively include a CdSeTe layer. A process for manufacturing a photovoltaic device includes forming a CdSSe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process includes forming a p-type absorber layer above the CdSSe layer.
Abstract:
A photovoltaic device and a method of making a photovoltaic device that includes a stack of layers, including a substrate and an electrode layer. The photovoltaic device includes a semiconductor light absorption layer that is formed on the stack by a coating liquid that includes a plurality of semiconducting particles. The coating liquid may also include a solvent and a plurality of additive molecules. The photovoltaic device also includes a transparent conducting layer disposed on the semiconductor light absorption layer and a grid electrode disposed on the transparent conducting layer.
Abstract:
A sensor circuit includes a transistor comprising an oxide semiconductor; a first circuit which supplies one of a first potential and a second potential; a first switch; a second switch; and a second circuit to which a current flowing between a source and a drain of the transistor is applied via the second switch when the first potential is applied to a gate of the transistor. The first potential is lower than a potential of the source or a potential of the drain of the transistor, and the second potential is higher than the potential of the source or the potential of the drain of the transistor. The first switch electrically connects the source and the drain of the transistor when the second potential is applied to the gate of the transistor, and electrically isolates them when the first potential is applied to the gate of the transistor.
Abstract:
A particle detector includes a support member. A front electrode layer is disposed over the support member. A semiconductor heterojunction is disposed over the front electrode layer. The semiconductor heterojunction has at least a polycrystalline n-type layer and at least a polycrystalline p-type layer. A back electrode layer is disposed over the semiconductor heterojunction. The back electrode includes at least one removed portion that separates a first portion of the back electrode layer from a second portion of the back electrode layer. The particle detector also includes a first body of electrically insulating material which separates a first portion of the semiconductor heterojunction from a second portion of the semiconductor heterojunction. The first body of electrically insulating material also separates a first portion of the front electrode layer from a second portion of the front electrode layer.
Abstract:
The method of wafer-scale integration of semiconductor devices comprises the steps of providing a semiconductor wafer (1), a further semiconductor wafer (2), which differs from the first semiconductor wafer in at least one of diameter, thickness and semiconductor material, and a handling wafer (3), arranging the further semiconductor wafer on the handling wafer, and bonding the further semiconductor wafer to the semiconductor wafer. The semiconductor device may comprise an electrically conductive contact layer (6) arranged on the further semiconductor wafer (2) and a metal layer connecting the contact layer with an integrated circuit.
Abstract:
Quantum dots (nanoparticle material) each having a core-shell structure including a core part and a shell part that protects the core part. The shell part of the quantum dot has a thickness T of 3 to 5 ML based on the constituent molecule of the shell part. A light-emitting device includes the quantum dots.
Abstract:
A three-dimensional multispectral imaging sensor and method for forming a three-dimensional multispectral imaging sensor are provided. The three-dimensional multispectral imaging sensor includes a monolithic structure having a plurality of layers. Each of the layers is formed from light detecting materials for detecting light of respective different non-overlapping wavelengths and having respective different bandgaps
Abstract:
This invention relates to a precursor material, which can be decomposed to form semiconductors and metal oxides, or more generally, materials for electronic components. The precursors comprise metal complexes of hydroxamato ligands. The invention further relates to a preparation process for thin inorganic films comprising various metals (e.g. Cu/In/Zn/Ga/Sn) and oxygen, selenium and/or sulfur. The thin films can be used in photovoltaic panels (solar cells), other semiconductor or electronic devices, and other applications using such films. The process uses molecular, metal containing precursor complexes with hydroxamato ligands. These can be combined in the process with chalcogenide sources or oxygen. Exemplarily, various metal oxides and copper-based chalcopyrites of the I-III-VI2 type are prepared with high purity at low temperatures.
Abstract translation:本发明涉及可分解形成半导体和金属氧化物的前体材料,或更一般地,涉及电子部件的材料。 前体包含异羟肟酸配体的金属络合物。 本发明还涉及包含各种金属(例如Cu / In / Zn / Ga / Sn)和氧,硒和/或硫的薄无机膜的制备方法。 薄膜可用于光伏面板(太阳能电池),其他半导体或电子设备以及使用这种薄膜的其它应用。 该方法使用分子,含金属的前体复合物与羟基配体配体。 这些可以在该过程中与硫族化物源或氧气结合。 示例性地,在低温下制备具有高纯度的I-III-VI2型的各种金属氧化物和铜基黄铜矿。
Abstract:
A method of forming infra red detector arrays is described, starting with the manufacture of a wafer. The wafer is formed from a GaAs or GaAs/Si substrate having CMT deposited thereon by MOVPE. The CMT deposited comprises a number of layers of differing composition, the composition being controlled during the MOVPE process and being dependent on the thickness of the layer deposited. Other layers are positioned between the active CMT layers and the substrate. A CdTe buffer layer aids the deposition of the CMT on the substrate and an etch stop layer is also provided. Once the wafer is formed, the buffer layer, the etch stop layer and all intervening layers are etched away leaving a wafer suitable for further processing into an infra red detector.