摘要:
An integrated circuit (IC) device may include a single substrate that includes a single chip, and a plurality of memory cells spaced apart from one another on the substrate and having different structures. Manufacturing the IC device may include forming a plurality of first word lines in a first region of the substrate, and forming a plurality of second word lines in or on a second region of the substrate. Capacitors may be formed on the first word lines. Source lines may be formed on the second word lines. An insulation layer that covers the plurality of capacitors and the plurality of source lines may be formed in the first region and the second region. A variable resistance structure may be formed at a location spaced apart from an upper surface of the substrate by a first vertical distance, in the second region.
摘要:
In a method of manufacturing an MRAM device, first and second lower electrodes may be formed on first and second regions, respectively, of a substrate. First and second MTJ structures having different switching current densities from each other may be formed on the first and second lower electrodes, respectively. First and second upper electrodes may be formed on the first and second MTJ structures, respectively.
摘要:
An integrated circuit (IC) device may include a single substrate that includes a single chip, and a plurality of memory cells spaced apart from one another on the substrate and having different structures. Manufacturing the IC device may include forming a plurality of first word lines in a first region of the substrate, and forming a plurality of second word lines in or on a second region of the substrate. Capacitors may be formed on the first word lines. Source lines may be formed on the second word lines. An insulation layer that covers the plurality of capacitors and the plurality of source lines may be formed in the first region and the second region. A variable resistance structure may be formed at a location spaced apart from an upper surface of the substrate by a first vertical distance, in the second region.
摘要:
A method of manufacturing an MRAM device includes sequentially forming a first insulating interlayer and an etch-stop layer on a substrate. A lower electrode is formed through the etch-stop layer and the first insulating interlayer. An MTJ structure layer and an upper electrode are sequentially formed on the lower electrode and the etch-stop layer. The MTJ structure layer is patterned by a physical etching process using the upper electrode as an etching mask to form an MTJ structure at least partially contacting the lower electrode. The first insulating interlayer is protected by the etch-stop layer so not to be etched by the physical etching process.
摘要:
The present invention provides a multi-level memory device and method of operating the same. The device comprises a memory structure in which a distribution density of resistance levels around its minimum value is higher than that around its maximum value.
摘要:
A phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation. In one embodiment, a semiconductor memory device includes a molding layer disposed over semiconductor substrate, a phase-changeable material pattern, and an oxidation barrier of electrically insulative material. The molding layer has a protrusion at its upper portion. One portion of the phase-changeable material pattern overlies the protrusion of the molding layer, and another portion of the phase-changeable material pattern extends through the protrusion. The electrically insulative material of the oxidation barrier may cover the phase-changeable material pattern and/or extend along and cover the entire area at which the protrusion of the molding layer and the portion of the phase-change material pattern disposed on the protrusion adjoin.
摘要:
Semiconductor devices having scalable two transistor memory cells, and methods of fabricating the same, are disclosed. The semiconductor devices include a semiconductor substrate having first, second and third isolation layers thereon. The first and second isolation layers are spaced apart to define a first active region therebetween, and the second and third isolation layers are likewise spaced apart to form a second active region therebetween. A cell gate is provided on each active region that includes a gate dielectric layer, a storage node, a multiple tunnel junction barrier and a source layer that are sequentially stacked. The device also includes first and second control lines that surround at least a portion of each sidewall of the cell gates. A dielectric layer may be interposed between the sidewalls of the cell gates and the control line that surrounds it. A data line connects to the cell gates.
摘要:
A method of fabricating a MOS transistor is provided. According to the method, a rapid thermal anneal is applied to a semiconductor substrate having active regions doped with well impurity ions and channel impurity ions. Thus, during implantation of the well and the channel impurity ions, crystalline defects resulting from the implantation can be cured by the rapid thermal anneal.
摘要:
A first conductive impurity ion is implanted into a semiconductor substrate to form a well area on which a gate electrode is formed. A first non-conductive impurity is implanted into the well area on both sides of the gate electrode to control a substrate defect therein and to form a first precipitate area to a first depth. A second conductive impurity ion is implanted into the well area on both sides of the gate electrode, so that a source/drain area is formed to a second depth being relatively shallower than the first depth. A second non-conductive impurity is implanted into the source/drain area so as to control a substrate defect therein and to form a second precipitate area. As a result, substrate defects such as dislocation, extended defect, and stacking fault are isolated from a P-N junction area, thereby forming a stable P-N junction.
摘要:
A semiconductor memory device includes a shorted variable resistor element in a memory cell. The semiconductor memory device includes main cells and reference cells each including a cell transistor and a variable resistor element. The variable resistor element of the reference cell is shorted by applying a breakdown voltage of a magnetic tunnel junction (MTJ) element, connection in parallel to a conductive via element, connection to a reference bit line at a node between the cell transistor and the variable resistor element, or replacement of the variable resistor element with the conductive via element. A sense amplifier increases a sensing margin of the main cell by detecting and amplifying a current flowing in a bit line of the main cell and a current flowing in the reference bit line to which a reference resistor is connected.