摘要:
Methods and apparatus for a solder mask trench used in a bump-on-trace (BOT) structure to form a semiconductor package are disclosed. A solder mask layer is formed on a trace and on a substrate. An opening of the solder mask layer, called a solder mask trench, is formed to expose the trace on the substrate. The solder mask trench has a width about a size of a diameter of a solder bump. A solder bump is landed directly on the exposed trace to connect a chip to the trace by an interconnect. With the formation of the solder mask trench, the trace exposed in the solder mask trench have a better grab force, which reduces the trace peeling failure for the semiconductor package. A plurality of solder mask trench rings may be formed in a package.
摘要:
Methods and apparatus for package on package structures. A structure includes a first integrated circuit package including at least one integrated circuit device mounted on a first substrate, a plurality of package on package connectors extending from a bottom surface and arranged in a pattern of one or more rows proximal to an outer periphery of the first substrate; and a second integrated circuit package including at least another integrated circuit device mounted on a second substrate and a plurality of lands on an upper surface coupled to the plurality of package on package connectors, and a plurality of external connectors extending from a bottom surface of the second substrate; wherein the pattern of the external connectors is staggered from the pattern of the package on package connectors so that the package on package connectors are not in vertical alignment with the external connectors. Methods for forming structures are disclosed.
摘要:
A leadframe-based semiconductor package and a fabrication method thereof are provided. The leadframe-based semiconductor package includes a chip implanted with a plurality of first and second conductive bumps thereon, and a leadframe having a plurality of leads. The first conductive bumps are bonded to the leads to electrically connect the chip to the leadframe. The chip, the first and second conductive bumps, and the leadframe are encapsulated by an encapsulant, with bottom ends of the second conductive bumps and bottom surfaces of the leads being exposed from the encapsulant. This allows the second conductive bumps to provide additional input/output electrical connections for the chip besides the leads.
摘要:
A structure includes a metal pad over a semiconductor substrate, a passivation layer having a portion over the metal pad, and a first polyimide layer over the passivation layer, wherein the first polyimide layer has a first thickness and a first Young's modulus. A post-passivation interconnect (PPI) includes a first portion over the first polyimide layer, and a second portion extending into the passivation layer and the first polyimide layer. The PPI is electrically coupled to the metal pad. A second polyimide layer is over the PPI. The second polyimide layer has a second thickness and a second Young's modulus. At least one of a thickness ratio and a Young's modulus ratio is greater than 1.0, wherein the thickness ratio is the ratio of the first thickness to the second thickness, and the Young's modulus ratio is the ratio of the second Young's modulus to the first Young's modulus.
摘要:
A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
摘要:
The present disclosure provides a semiconductor device, the device includes a substrate, a front-end structure formed in the substrate, a back-end structure formed on the front-end structure, a heater embedded in the back-end structure and operable to generate heat, and a sensor embedded in the back-end structure and operable to sense a temperature of the semiconductor device.
摘要:
An enhanced wafer level chip scale packaging (WLCSP) copper electrode post is described having one or more pins that protrude from the top of the electrode post. When the solder ball is soldered onto the post, the pins are encapsulated within the solder material. The pins not only add shear strength to the soldered joint between the solder ball and the electrode post but also create a more reliable electrical connection due to the increased surface area between the electrode post/pin combination and the solder ball. Moreover, creating an irregularly shaped solder joint retards the propagation of cracks that may form in the intermetal compounds (IMC) layer formed at the solder joint.
摘要:
A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
摘要:
A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
摘要:
A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.