Abstract:
An apparatus for inspecting defects in a circuit pattern is described. The apparatus includes at least one laser unit for radiating a laser beam onto a first end of a circuit pattern formed on a substrate. The apparatus also includes a capacitor sensor disposed opposite a second end of the circuit pattern, which is connected to the first end of the circuit pattern through a via hole, in a non-contact manner. The apparatus also includes a voltage source connected to the capacitor sensor and configured to apply a voltage. The apparatus also includes a measurement unit connected to the capacitor sensor and configured to detect variation in impedance generated in the capacitor sensor.
Abstract:
In one embodiment, a miniaturized solid-state imaging apparatus includes a body having a cavity for mounting a semiconductor chip therein. The body has an overhanging portion extending toward the cavity. Further, a lead is disposed within the body. The lead has one end exposed through a top surface of the body and the other end exposed through a bottom surface of the body for electrical connection thereof.
Abstract:
An electronic package and a manufacturing method thereof are disclosed. The electronic package manufacturing method, which includes providing a printed circuit board (PCB) having one surface on which a first chip is mounted; attaching one surface of a second chip on the other surface of the PCB, a pad being formed in the other surface of the second chip; encapsulating the second chip by coating the other surface of the PCB with an insulation material; and processing a first via by punching a hole on the insulation material, the first via being electrically interconnected to the pad, can perform stable handling in a process of mounting a semiconductor chip, make it unnecessary to add a process for chip encapsulation and realize a system in package having high density and high reliability.
Abstract:
In one embodiment, a miniaturized solid-state imaging apparatus includes a body having a cavity for mounting a semiconductor chip therein. The body has an overhanging portion extending toward the cavity. Further, a lead is disposed within the body. The lead has one end exposed through a top surface of the body and the other end exposed through a bottom surface of the body for electrical connection thereof.
Abstract:
An electronic component package and a manufacturing method thereof are disclosed. The electronic component package manufacturing method, which includes mounting an electronic component in one surface of a first insulation layer; bonding a heat sink to the one surface of the first insulation layer, corresponding to the electronic component, to cover the electronic component, the heat sink being formed with a cavity; charging the cavity with an adhesive; and forming a circuit pattern in the other surface of the first insulation layer, can prevent a void from being generated in the adhesive, make the handling stable and make the size small by allowing the heat sink formed with the cavity to cover the electronic component before the pattern build-up and supplying the adhesive through one side of the cavity while providing negative pressure through the other side.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package are disclosed. A semiconductor package in accordance with an embodiment of the present invention includes a substrate, which has a ground circuit formed thereon, a semiconductor chip, which is mounted on the substrate, a conductive first shield, which is formed on an upper surface of the semiconductor chip and connected with the ground circuit, and a conductive second shield, which covers the substrate and the semiconductor chip and is connected with the first shield. With a semiconductor package in accordance with an embodiment of the present invention, grounding is possible between semiconductor chips because a shield is also formed on an upper surface of the semiconductor chip, and the shielding property can be improved by a double shielding structure.
Abstract:
The following invention is directed to a tape substrate having a reinforcement layer for tape packages and a method of fabricating the same. In an example embodiment, a tape substrate for tape packages may include a base film, a circuit pattern formed on the base film, and at least one reinforcement layer formed over a surface of the base film. The base film may have sprocket holes formed at regular intervals in the surface of the base film along at least one outer edge of the base film. The at least one reinforcement layer may have guide holes corresponding to the sprocket holes of the base film that are larger than the sprocket holes. The example embodiment may also include at least one reinforcement being set back from the outer edge of the base film.
Abstract:
The following invention is directed to a tape substrate having a reinforcement layer for tape packages and a method of fabricating the same. In an example embodiment, a tape substrate for tape packages may include a base film, a circuit pattern formed on the base film, and at least one reinforcement layer formed over a surface of the base film. The base film may have sprocket holes formed at regular intervals in the surface of the base film along at least one outer edge of the base film. The at least one reinforcement layer may have guide holes corresponding to the sprocket holes of the base film that are larger than the sprocket holes. The example embodiment may also include at least one reinforcement being set back from the outer edge of the base film.
Abstract:
Disclosed herein is a 3D power module package, including: a power converting unit packaged to include a heat radiating substrate, a power device connected to the heat radiating substrate, and a lead frame; a controlling unit packaged to include a controlling unit substrate and IC and controlling devices mounted on an upper portion of the controlling unit substrate; and an electrical connecting unit electrically connecting the packaged power converting unit and the packaged controlling unit.
Abstract:
Disclosed herein is an apparatus and method for inspecting defects in a circuit pattern. In the inspection apparatus and method, a laser beam is radiated by a laser unit onto a first end of a circuit pattern, and variation in impedance of a capacitor sensor disposed at a second end of the circuit pattern is measured, thus measuring the open/short circuits of the circuit pattern.Accordingly, the inspection apparatus and method are advantageous in that defects in the circuit pattern can be measured in a non-contact manner, so that the consumption of pin probes can be reduced, and the reliability of the measurement of defects in the circuit pattern can be improved.