摘要:
A method for forming a thin film according to an exemplary embodiment of the present invention includes forming the thin film at a power density in the range of approximately 1.5 to approximately 3 W/cm2 and at a pressure of an inert gas that is in the range of approximately 0.2 to approximately 0.3 Pa. This process results in an amorphous metal thin film barrier layer that prevents undesired diffusion from adjacent layers, even when this barrier layer is thinner than many conventional barrier layers.
摘要翻译:根据本发明的示例性实施方案的薄膜的形成方法包括以大约1.5至大约3W / cm 2的功率密度和处于该范围内的惰性气体的压力形成薄膜 大约0.2至大约0.3Pa。这个过程产生一个非晶金属薄膜阻挡层,防止相邻层的不期望的扩散,即使该阻挡层比许多传统的阻挡层薄。
摘要:
A method for manufacturing a thin film transistor array panel, including: sequentially forming a first silicon layer, a second silicon layer, a lower metal layer, and an upper metal layer on a gate insulating layer and a gate line; forming a first film pattern on the upper metal layer; forming a first lower metal pattern and a first upper metal pattern that includes a protrusion, by etching the upper metal layer and the lower metal layer; forming first and second silicon patterns by etching the first and second silicon layers; forming a second film pattern by ashing the first film pattern; forming a second upper metal pattern by etching the first upper metal pattern; forming a data line and a thin film transistor by etching the first lower metal pattern and the first and second silicon patterns; and forming a passivation layer and a pixel electrode on the resultant.
摘要:
A method for manufacturing a TFT array panel includes forming a photosensitive film pattern with first and second parts in first and second sections on a metal layer, etching the metal layer of a third section using the film pattern as a mask to form first and second metal patterns, etching the film pattern to remove the first part, etching first and second amorphous silicon layers of the third section using the second part as a mask to form an amorphous silicon pattern and a semiconductor, etching the first and second metal patterns of the first section using the second part as a mask to form a source electrode and a drain electrode including an upper layer and a lower layer, and etching the amorphous silicon pattern of the region corresponding to the first section by using the second part as a mask to form an ohmic contact.
摘要:
A method for manufacturing a thin film transistor array panel includes forming a gate line; forming an insulating layer on the gate line; forming first and second silicon layers first and second metal layers; forming a photoresist pattern having first and second portions; forming first and second metal patterns by etching the first and second metal layers; processing the first metal pattern with SF6 or SF6/He; forming silicon and semiconductor patterns by etching the second and first silicon layers; removing the first portion of the photoresist pattern; forming an upper layer of a data wire by wet etching the second metal pattern; forming a lower layer of the data wire and an ohmic contact by etching the first metal and amorphous silicon patterns; forming a passivation layer including a contact hole on the upper layer; and forming a pixel electrode on the passivation layer.
摘要:
An oxide semiconductor thin film transistor substrate includes a gate line and a gate electrode disposed on an insulating substrate, an oxide semiconductor pattern disposed adjacent to the gate electrode, a data line electrically insulated from the gate line, the data line and the gate line defining a display region, a first opening exposing a surface of the data line, a second opening exposing a surface of the oxide semiconductor pattern, and a drain electrode disposed on the first opening and a drain electrode pad, the drain electrode extending from the first opening to the second opening and electrically connecting the drain electrode pad and the oxide semiconductor pattern.
摘要:
Provided are a photoresist composition having superior adhesion to an etch target film, a method of forming a pattern by using the photoresist composition, and a method of manufacturing a thin-film transistor (TFT) substrate. The photoresist composition includes an alkali-soluble resin; a photosensitive compound; a solvent; and 0.01 to 0.1 parts by weight of a compound represented by Formula 1: wherein R is one of hydrogen, an alkyl having 1 to 10 carbon atoms, a cycloalkyl having 4 to 8 carbon atoms, and a phenyl group.
摘要:
Exemplary embodiments of the present invention provide a metal wiring etchant. A metal wiring etchant according to an exemplary embodiment of the present invention includes ammonium persulfate, an organic acid, an ammonium salt, a fluorine-containing compound, a glycol-based compound, and an azole-based compound.
摘要:
A method for forming a thin film according to an exemplary embodiment of the present invention includes forming the thin film at a power density in the range of approximately 1.5 to approximately 3 W/cm2 and at a pressure of an inert gas that is in the range of approximately 0.2 to approximately 0.3 Pa. This process results in an amorphous metal thin film barrier layer that prevents undesired diffusion from adjacent layers, even when this barrier layer is thinner than many conventional barrier layers.
摘要翻译:根据本发明的示例性实施方式的薄膜形成方法包括以大约1.5至大约3W / cm 2的功率密度形成薄膜,并且在惰性气体的压力范围内 大约0.2至大约0.3Pa。这个过程产生一个非晶金属薄膜阻挡层,防止相邻层的不期望的扩散,即使该阻挡层比许多传统的阻挡层更薄。
摘要:
A liquid crystal display device having fingerprint identification device for enhancing aperture ratio and transmissivity of a TFT-LCD panel is disclosed. A fingerprint identification substrate (400) is attached to a TFT substrate (300). The TFI substrate has color-filter-on-array structure in which the color filters (336) and the thin film transistors can be eliminated, the aperture ratio is increased, and the quality of image display is enhanced. In addition, the transmissivity is increased according to the decrease of the number of glass substrate used in the liquid crystal display device, so that the sensitivity of fingerprint identification is enhanced.
摘要:
A thin film transistor array panel includes: a substrate; a signal line disposed on the substrate and including copper (Cu); a passivation layer disposed on the signal line and having a contact hole exposing a portion of the signal line; and a conductive layer disposed on the passivation layer and connected to the portion of the signal line through the contact hole, wherein the passivation layer includes an organic passivation layer including an organic insulator that does not include sulfur, and a method of manufacturing the thin film transistor prevents formation of foreign particles on the signal line.