Abstract:
A method of manufacturing a printed circuit board having a bump is disclosed. The method includes preparing a first carrier having a first circuit formed thereon, compressing the first carrier to one surface of an insulation layer such that the first circuit is buried, stacking an etching resist on the first carrier in accordance with where the bump is to be formed and forming the bump by etching the first carrier. In accordance with an embodiment of the present invention, the difference in height between a bump and its adjacent bump in a printed circuit board can be reduced, and thus electrical connection between an electronic component and the printed circuit board can be better implemented.
Abstract:
Provided is a ball grid array substrate, a semiconductor chip package, and a method of manufacturing the same. The ball grid array substrate includes an insulating layer having a first surface providing a mounting region for a semiconductor chip, a second surface opposing the first surface, and an opening connecting the second surface with the mounting region of the semiconductor chip, and a circuit pattern buried in the second surface. Since the ball grid array substrate is manufactured by a method of stacking two insulating layers, existing devices can be used, and the ball grid array substrate can be manufactured as an ultra thin plate. In addition, since the circuit pattern is buried in the insulating layer, a high-density circuit pattern can be formed.
Abstract:
A single-layer board on chip package substrate and a manufacturing method thereof are disclosed. In accordance with an embodiment of the present invention, the single-layer board on chip package substrate includes an insulator, a circuit pattern and a flip-chip bonding pad, which are formed on an upper surface of the insulator, a conductive bump, which is in contact with a lower surface of the circuit pattern and penetrates through the insulator, a solder resist layer, which is formed on the upper surface of the insulator such that at least a portion of the flip-chip bonding pad is exposed, and a flip-chip bonding bump, which is formed on an upper surface of the flip-chip bonding pad in order to make a flip-chip connection with an electronic component.
Abstract:
A method of manufacturing a printed circuit board having a bump is disclosed. The method includes preparing a first carrier having a first circuit formed thereon, compressing the first carrier to one surface of an insulation layer such that the first circuit is buried, stacking an etching resist on the first carrier in accordance with where the bump is to be formed and forming the bump by etching the first carrier. In accordance with an embodiment of the present invention, the difference in height between a bump and its adjacent bump in a printed circuit board can be reduced, and thus electrical connection between an electronic component and the printed circuit board can be better implemented.
Abstract:
A carrier and a method for manufacturing a printed circuit board are disclosed. The method for manufacturing a printed circuit board may include: forming a first circuit pattern on each of a pair of release layers, which are attached respectively to either side of a base layer by adhesive layers; detaching the pair of release layers from the base layer; stacking and pressing the pair of release layers onto either side of an insulation substrate such that the first circuit patterns are buried in the insulation substrate; and separating the pair of release layers. By forming a circuit pattern on each of a pair of release layers with a single process, and transferring the circuit pattern into each side of an insulation substrate, the manufacturing process can be shortened and circuit patterns can be formed to a high density.
Abstract:
A single-layer board on chip package substrate and a manufacturing method thereof are disclosed. In accordance with an embodiment of the present invention, the single-layer board on chip package substrate includes an insulator, a circuit pattern and a flip-chip bonding pad, which are formed on an upper surface of the insulator, a conductive bump, which is in contact with a lower surface of the circuit pattern and penetrates through the insulator, a solder resist layer, which is formed on the upper surface of the insulator such that at least a portion of the flip-chip bonding pad is exposed, and a flip-chip bonding bump, which is formed on an upper surface of the flip-chip bonding pad in order to make a flip-chip connection with an electronic component.
Abstract:
A method of manufacturing a circuit board is disclosed. The method may include: forming a relievo pattern, which is in a corresponding relationship with a circuit pattern, on a metal layer that is stacked on a carrier; stacking and pressing the carrier onto an insulation layer with the relievo pattern facing the insulation layer; transcribing the metal layer and the relievo pattern into the insulation layer by removing the carrier; forming a via hole in the insulation layer on which the metal layer is transcribed; and filling the via hole and forming a plating layer over the metal layer by performing plating over the insulation layer on which the metal layer is transcribed. As the relievo pattern may be formed on the metal layer stacked on the carrier, and the relievo pattern may be transcribed into the insulation layer, high-density circuit patterns can be formed.
Abstract:
The present invention relates to a printed circuit board, and in particular, to a printed circuit board for a package of electronic components and manufacturing method thereof. One aspect of present invention provides a manufacturing method of a printed circuit board for an electronic component package, which includes: forming a circuit pattern including bonding pads on one side of a first insulation layer, laminating a second insulation layer onto one side of the first insulation layer, and exposing the bonding pads by removing a part of the first insulation layer and the second insulation layer corresponding to the location in which the bonding pads is formed.
Abstract:
A method of manufacturing a printed circuit board is disclosed, in which a cavity is formed for embedding a component, which includes: providing a core board, in which an inner circuit is buried; forming a first via in the core board for interlayer conduction; selectively forming a first photoresist in a position on the core board in correspondence with a position of the cavity; stacking a first build-up layer, on which a first outer circuit is formed, on the core board; and selectively removing the first build-up layer in correspondence with the position of the cavity and removing the first photoresist. Utilizing the method, a board can be manufactured with greater precision, as the thickness tolerance of the cavity may be obtained by controlling the thickness of the photoresist, and the overall thickness of the board can be controlled by controlling the height of the cavity.
Abstract:
Provided is a ball grid array substrate, a semiconductor chip package, and a method of manufacturing the same. The ball grid array substrate includes an insulating layer having a first surface providing a mounting region for a semiconductor chip, a second surface opposing the first surface, and an opening connecting the second surface with the mounting region of the semiconductor chip, and a circuit pattern buried in the second surface. Since the ball grid array substrate is manufactured by a method of stacking two insulating layers, existing devices can be used, and the ball grid array substrate can be manufactured as an ultra thin plate. In addition, since the circuit pattern is buried in the insulating layer, a high-density circuit pattern can be formed.