Abstract:
A circuit board including: an insulator having a trench; a first circuit pattern formed to bury a portion of the trench; and a second circuit pattern formed on a surface of the insulator having the trench formed therein.
Abstract:
A method of manufacturing a circuit board, which includes a bump pad on which a solder bump may be placed, may include forming a solder pad on a surface of a first carrier; forming a metal film, which covers the solder pad and which extends to a bump pad forming region; forming a circuit layer and a circuit pattern, which are electrically connected with the metal film, on a surface of the first carrier; pressing the first carrier and an insulator such that a surface of the first carrier and the insulator faces each other; and removing the first carrier. Utilizing this method, the amount of solder for the contacting of a flip chip can be adjusted, and solder can be filled inside the board, so that after installing a chip, the overall thickness of the package can be reduced.
Abstract:
A buried pattern substrate includes an insulation layer; a circuit pattern buried in the insulation layer such that a part thereof is exposed at a surface of the insulation layer; and a stud bump buried in the insulation layer such that one end portion is exposed at one surface of the insulation layer, and such that the other end portion is exposed at the other surface of the insulation layer.
Abstract:
A method of manufacturing a board on chip package including laminating a dry film on a carrier film, one side of which is laminated by a thin metal film; patterning the dry film in accordance with a circuit wire through light exposure and developing process, and forming a solder ball pad and a circuit wire; removing the dry film; laminating an upper photo solder resist excluding a portion where the solder ball pad is formed; etching the thin metal film formed on a portion where the upper photo solder resist is not laminated; mounting a semiconductor chip on the solder ball pad by a flip chip bonding; molding the semiconductor chip with a passivation material; removing the carrier film and the thin metal film; and laminating a lower photo solder resist under the solder ball pad. The board on chip package provides a high density circuit since a circuit pattern is formed using a seed layer.
Abstract:
A method for manufacturing a substrate having a cavity which includes forming a barrier around a predetermined area where the cavity is to be formed on a copper foil laminated master, an internal circuit formed in the copper foil laminated master; coating a thermosetting material in the area where the cavity is to be formed; laminating a dielectric layer and a copper foil layer on the copper foil laminated master, on which the thermosetting material is coated; pressing the laminated dielectric layer and copper foil layer using a press plate, on which a protruded part is formed in an area corresponding to the area where the cavity is to be formed; forming an external circuit pattern in the upper part of the laminated dielectric layer; and dissolving the coated thermosetting material using a solvent and forming the cavity.
Abstract:
A method of manufacturing a printed circuit board is disclosed, in which a cavity is formed for embedding a component, which includes: providing a core board, in which an inner circuit is buried; forming a first via in the core board for interlayer conduction; selectively forming a first photoresist in a position on the core board in correspondence with a position of the cavity; stacking a first build-up layer, on which a first outer circuit is formed, on the core board; and selectively removing the first build-up layer in correspondence with the position of the cavity and removing the first photoresist. Utilizing the method, a board can be manufactured with greater precision, as the thickness tolerance of the cavity may be obtained by controlling the thickness of the photoresist, and the overall thickness of the board can be controlled by controlling the height of the cavity.
Abstract:
A method for manufacturing a substrate having a cavity is disclosed. The method comprises: (a) forming a first circuit patter on both sides of a seed layer by use of a first dry film, the seed layer being for forming a circuit pattern on both sides; (b) laminating a second dry film on the first dry film on both sides of the seed layer, the thickness of the second dry film corresponding to the depth of the cavity to be formed; (c) laminating a dielectric layer on an area outside of where the cavity is to be formed on both sides of the seed layer, the thickness of the dielectric layer corresponding to the depth of the cavity to be formed; (d) laminating on the seed layer a copper foil laminated master having a second circuit pattern; and (e) forming the cavity by peeling off the first dry film and the second dry film after removing the seed layer. The method for manufacturing a substrate with a cavity in accordance with the present invention can improve the efficiency of a substrate manufacturing process by using both sides of a seed layer to manufacture the substrate with a cavity.
Abstract:
A manufacturing method of bottom substrate of package. A bottom substrate of a package on package electrically connected to a top substrate by means of a solder ball, including a core board, a solder ball pad formed on a surface of the core board in correspondence with a location of the solder ball, an insulation layer laminated on the core board, a through hole formed by removing a part of the insulation layer such that the solder ball pad is exposed, and a metallic layer filled in the through hole and connected electrically with the solder ball, allows the number of ICs mounted on a bottom substrate to be increased without increasing the size of a solder ball, and allows the size and pitch of the solder balls to be made smaller by controlling the thickness of the insulation layer laminated on the bottom substrate, whereby more signal transmission is possible between a top substrate and a bottom substrate.
Abstract:
A manufacturing method for rigid-flexible multi-layer printed circuit board including: a flexible substrate of which circuits are formed on both sides and which is bendable; a rigid substrate which is laminated on the flexible substrate and circuits are formed on both sides and a cavity within which a semiconductor chip is mounted is formed; and a bonding sheet adhering the flexible substrate and the rigid substrate and having a insulating property. When the same numbers of the semiconductor chips are mounted or the POP is embodied, the whole thickness of the package can be lower. Also, two more semiconductor chips can be mounted using the space as the thickness of the core layer, and the structure impossible when the number of semiconductor chip mounted on the bottom substrate becomes two from one in conventional technology can be embodied.
Abstract:
A method of manufacturing a circuit board that includes: forming a conductive relievo pattern, including a first plating layer, a first metal layer, and a second plating layer stacked sequentially in correspondence with a first circuit pattern, on a seed layer stacked on a carrier; stacking and pressing together the carrier and an insulator, such that a surface of the carrier having the conductive relievo pattern faces the insulator; transcribing the conductive relievo pattern into the insulator by removing the carrier; forming a conduction pattern, including a third plating layer and a second metal layer stacked sequentially in correspondence with a second circuit pattern, on the surface of the insulator having the conductive relievo pattern transcribed; removing the first plating layer and seed layer; and removing the first and second metal layers, can provide a circuit board that has high-density circuit patterns without an increased amount of insulator.