Abstract:
A device includes a package component, and a metal trace on a surface of the package component. A first and a second dielectric mask cover a top surface and sidewalls of the metal trace, wherein a landing portion of the metal trace is located between the first and the second dielectric masks. The landing portion includes a first portion having a first width, and a second portion connected to an end of the first portion. The second portion has a second width greater than the first width, wherein the first and the second widths are measured in a direction perpendicular to a lengthwise direction of the metal trace.
Abstract:
A device includes a package component, and a metal trace on a surface of the package component. A first and a second dielectric mask cover a top surface and sidewalls of the metal trace, wherein a landing portion of the metal trace is located between the first and the second dielectric masks. The landing portion includes a first portion having a first width, and a second portion connected to an end of the first portion. The second portion has a second width greater than the first width, wherein the first and the second widths are measured in a direction perpendicular to a lengthwise direction of the metal trace.
Abstract:
A package structure includes a substrate; a die over and flip bonded on the substrate; a heat sink over the die; and one or more spacer separating the heat sink from the substrate.
Abstract:
A test structure to detect vertical leakage in a multi-layer flip chip pad stack or similar semiconductor device. The test structure is integrated into the semiconductor device when it is fabricated. A metal layer includes at least two portions that are electrically isolated from each other; one portion being disposed under a test pad, and another portion being disposed under a pad associated with a pad structure being tested. The metal layer in most cases is separated from a top metal layer directly underlying the pads by an inter-metal dielectric (IMD) layer. A metal layer portion underlying the pad to be tested forms a recess in which a conductive member is disposed without making electrical contact. The conductive line is electrically coupled to a test portion of the same or, alternately, of a different metal layer. The test structure may be implemented on multiple layers, with recesses portions underlying the same or different pads.
Abstract:
A system-in-package (SiP) package is provided. In one embodiment, the SiP package comprises a substrate having a first surface and a second surface opposite the first surface, the substrate having a set of bond wire studs on bond pads formed on the second surface thereof; a first semiconductor chip having a first surface and a second surface opposite the first surface, wherein the first surface of the first semiconductor chip is mounted to the second surface of the substrate by means of solder bumps; an underfill material disposed between the first semiconductor chip and the substrate, encapsulating the solder bumps; a second semiconductor chip having a first surface and a second surface opposite the first surface, wherein the first surface of the second semiconductor chip is mounted to the second surface of the first semiconductor chip; and a set of bond wires electrically coupled from the second semiconductor chip to the set of bond wire studs on the substrate.
Abstract:
An EPROM cell and a method that includes a gate structure having a sidewall spacer. The sidewall spacer is made by way of an amorphous or polycrystalline silicon layer, which is converted into an insulating layer such as silicon dioxide. Deposition of the amorphous or polycrystalline silicon layer is more accurate and produces a more uniform layer than conventional dielectric layer deposition.
Abstract:
A system-in-package (SiP) package is provided. In one embodiment, the SiP package comprises a substrate having a first surface and a second surface opposite the first surface, the substrate having a set of bond wire studs on bond pads formed on the second surface thereof; a first semiconductor chip having a first surface and a second surface opposite the first surface, wherein the first surface of the first semiconductor chip is mounted to the second surface of the substrate by means of solder bumps; an underfill material disposed between the first semiconductor chip and the substrate, encapsulating the solder bumps; a second semiconductor chip having a first surface and a second surface opposite the first surface, wherein the first surface of the second semiconductor chip is mounted to the second surface of the first semiconductor chip; and a set of bond wires electrically coupled from the second semiconductor chip to the set of bond wire studs on the substrate.
Abstract:
An improved via arrangement for a bonding pad structure is disclosed comprising an array of vias surrounded by a line via. The line via provides a barrier to cracks in the dielectric layer encompassing the via array. Although cracks are able to spread relatively unhindered between the vias of the via array, they are blocked by the line via and thus can not spread to neighboring regions of the chip or wafer. The line via can be provided in a variety of shapes and dimensions, to suit a desired application. Additionally, due to its substantially uninterrupted length, the line via provides added strength to the bond pad.
Abstract:
Solder bump structures for semiconductor device packaging is provided. In one embodiment, a semiconductor device comprises a substrate having a bond pad and a first passivation layer formed thereabove, the first passivation layer having an opening therein exposing a portion of the bond pad. A metal pad layer is formed on a portion of the bond pad, wherein the metal pad layer contacts the bond pad. A second passivation layer is formed above the metal pad layer, the second passivation layer having an opening therein exposing a portion of the metal pad layer. A patterned and etched polyimide layer is formed on a portion of the metal pad layer and a portion of the second passivation layer. A conductive layer is formed above a portion of the etched polyimide layer and a portion of the metal pad layer, wherein the conductive layer contacts the metal pad layer. A conductive bump structure is connected to the conductive layer.
Abstract:
A method for forming a semiconductor package provides a ball grid array, BGA, formed on a package substrate. The apices of the solder balls of the BGA are all at the same height, even if the package substrate is non-planar. Different solder ball pad sizes are used and tailored to compensate for non-planarity of the package substrate that may result from thermal warpage. Larger size solder ball pads are formed at relatively-high locations on the package substrate. An equal amount of solder is formed on each of the solder ball pads to produce solder balls having different heights and coplanar apices.