Abstract:
An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
Abstract:
An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
Abstract:
A method for patterning a substrate is described. The method includes receiving a substrate having a patterned layer, wherein the patterned layer defines a first mandrel pattern, and wherein a first material layer of a first composition is conformally deposited over the first mandrel pattern. The method further includes partially removing the first material layer using a first gas cluster ion beam (GCIB) etching process to expose a top surface of the first mandrel pattern, open a portion of the first material layer at a bottom region adjacent a feature of the first mandrel pattern, and retain a remaining portion of the first material layer on sidewalls of the first mandrel pattern; and selectively removing the first mandrel pattern using one or more etching processes to leave a second mandrel pattern comprising the remaining portion of the first material layer that remained on the sidewalls of the first mandrel pattern.
Abstract:
A method for correcting a surface profile on a substrate is described. In particular, the method includes receiving a substrate having a heterogeneous layer composed of a first material and a second material, wherein the heterogeneous layer has an initial upper surface exposing the first material and the second material, and defining a first surface profile across the substrate. The method further includes setting a target surface profile for the heterogeneous layer, selectively removing at least a portion of the first material using a gas cluster ion beam (GCIB) etching process, and recessing the first material beneath the second material, and thereafter, selectively removing at least a portion of the second material to achieve a final upper surface exposing the first material and the second material, and defining a second surface profile, wherein the second surface profile is within a pre-determined tolerance of the target surface profile.
Abstract:
A method for patterning a layer at a bottom of a high aspect ratio feature of a substrate is described. The method includes providing the substrate having a first layer with a feature pattern overlying a second layer. The feature pattern is characterized with an initial critical dimension (CD), an initial corner profile, and an aspect ratio of 5:1 or greater. The method further includes etching through at least a portion of the second layer at the bottom of the feature pattern to extend the feature pattern at least partially into the second layer while retaining a final CD within a threshold of the initial CD and a final corner profile within a threshold of the initial corner profile using a gas cluster ion beam (GCIB) etching process.
Abstract:
A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics.
Abstract:
A system and method for performing location specific processing of a workpiece is described. The method includes placing a microelectronic workpiece in a beam processing system, selecting a beam scan size for a beam scan pattern that is smaller than a dimension of the microelectronic workpiece, generating a processing beam, and processing a target region of the microelectronic workpiece by irradiating the processing beam along the beam scan pattern onto the target region within the beam scan size selected for processing the microelectronic workpiece.
Abstract:
A system and method for performing corrective processing of a workpiece is described. The system and method includes receiving a first set of parametric data from a first source that diagnostically relates to at least a first portion of a microelectronic workpiece, and receiving a second set of parametric data from a second source different than the first source that diagnostically relates to at least a second portion of the microelectronic workpiece. Thereafter, a corrective process is generated, and a target region of the microelectronic workpiece is processed by applying the corrective process to the target region using a combination of the first set of parametric data and the second set of parametric data.
Abstract:
A beam processing system and method of operating are described. In particular, the beam processing system includes a beam source having a nozzle assembly that is configured to introduce a primary gas through the nozzle assembly to a vacuum vessel in order to produce a gaseous beam, such as a gas cluster beam, and optionally, an ionizer positioned downstream from the nozzle assembly, and configured to ionize the gaseous beam to produce an ionized gaseous beam. The beam processing system further includes a process chamber within which a substrate is positioned for treatment by the gaseous beam, and a secondary gas source, wherein the secondary gas source includes a secondary gas supply system that delivers a secondary gas, and a secondary gas controller that operatively controls the flow of the secondary gas injected into the beam processing system downstream of the nozzle assembly.
Abstract:
A system and method for performing corrective processing of a workpiece is described. The system and method includes receiving a first set of parametric data from a first source that diagnostically relates to at least a first portion of a microelectronic workpiece, and receiving a second set of parametric data from a second source different than the first source that diagnostically relates to at least a second portion of the microelectronic workpiece. Thereafter, a corrective process is generated, and a target region of the microelectronic workpiece is processed by applying the corrective process to the target region using a combination of the first set of parametric data and the second set of parametric data.