Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
    1.
    发明授权
    Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction 失效
    用于将薄膜硅p-n结二极管与磁性隧道结直接集成的工艺

    公开(公告)号:US06828180B2

    公开(公告)日:2004-12-07

    申请号:US10260067

    申请日:2002-09-27

    IPC分类号: H01L2184

    摘要: A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    摘要翻译: 用于直接集成薄膜硅p-n结二极管与磁性隧道结的方法,用于高性能,非易失性存储器阵列的高级磁随机存取存储器(MRAM)单元。 该方法基于用于在沉积到诸如陶瓷,电介质,玻璃或聚合物的低温基底上的金属的膜上制造垂直多晶硅电子器件结构,特别是p-n结二极管的脉冲激光处理。 该过程保留了典型地沉积器件的底层和结构,例如硅集成电路。 该方法涉及在金属层上的无定形或多晶相中的至少一层硅的低温沉积。 在沉积期间或之后,可以在硅膜中引入掺杂剂。 然后用有效吸收在硅中的短脉冲激光能量照射该膜,这导致膜的结晶并且同时通过超快熔化和固化来激活掺杂剂。 可以在结晶之前或之后对硅膜进行图案化。

    Method of shallow junction formation in semiconductor devices using gas
immersion laser doping
    2.
    发明授权
    Method of shallow junction formation in semiconductor devices using gas immersion laser doping 失效
    使用气浸式激光掺杂的半导体器件中浅结形成的方法

    公开(公告)号:US5316969A

    公开(公告)日:1994-05-31

    申请号:US993788

    申请日:1992-12-21

    摘要: Shallow regions are formed in a semiconductor body by irradiating the surface region with a pulsed laser beam in an atmosphere including the dopant. The pulsed laser beam has sufficient intensity to drive in dopant atoms from the atmosphere but insufficient intensity to melt the semiconductor material. A silicide layer can be placed over the surface of the semiconductor material prior to irradiation with the dopant being driven from the atmosphere through the silicide into the surface region of the semiconductor body. Alternatively, the silicide layer can include dopant atoms prior to irradiating the surface region.

    摘要翻译: 通过在包括掺杂剂的气氛中用脉冲激光束照射表面区域,在半导体本体中形成浅区域。 脉冲激光束具有足够的强度来驱动来自大气的掺杂剂原子,但不足以使半导体材料熔化。 在辐照之前,硅化物层可以放置在半导体材料的表面上,掺杂剂通过硅化物从大气驱动到半导体本体的表面区域。 或者,硅化物层可以在照射表面区域之前包括掺杂剂原子。

    Method for producing a low defect layer of silicon-on-sapphire wafer
    3.
    发明授权
    Method for producing a low defect layer of silicon-on-sapphire wafer 失效
    用于制造蓝宝石蓝宝石晶片的低缺陷层的方法

    公开(公告)号:US4177084A

    公开(公告)日:1979-12-04

    申请号:US913982

    申请日:1978-06-09

    摘要: A method is provided for producing a low-defect layer of silicon on a sapphire substrate. A silicon-on-sapphire (SOS) wafer is formed by initially epitaxially depositing silicon on the sapphire substrate to form a monocrystalline layer which is substantially free of lattice defects near its surface, but which exhibits a high defect density near the sapphire substrate. The wafer is subsequently subjected to an ion implantation to form an amorphous region in the silicon near the silicon-sapphire interface. The implanted ions are preferably "channeled" through the silicon layer to insure that the amorphous region will be localized in the imperfect region near the substrate, leaving the upper region of the silicon layer undamaged. During a subsequent high temperature anneal cycle, monocrystalline silicon is regrown from the residual upper regions of the silicon down to the silicon-sapphire interface, producing a silicon layer having a greatly reduced defect density throughout the layer.

    摘要翻译: 提供了一种在蓝宝石衬底上制造低缺陷硅层的方法。 通过最初在蓝宝石衬底上外延地沉积硅以形成在其表面附近基本上没有晶格缺陷但在蓝宝石衬底附近表现出高缺陷密度的单晶层,形成硅蓝宝石(SOS)晶片。 接着对晶片进行离子注入,以在硅 - 蓝宝石界面附近的硅中形成非晶区域。 注入的离子优选通过硅层“引导”,以确保非晶区域将局限于衬底附近的不完美区域,使得硅层的上部区域不受损害。 在随后的高温退火循环中,将单晶硅从硅的残余上部区域重新生长到硅 - 蓝宝石界面,从而产生在整个层中具有大大降低的缺陷密度的硅层。

    Method for formation of thin film transistors on plastic substrates
    4.
    发明授权
    Method for formation of thin film transistors on plastic substrates 失效
    在塑料基板上形成薄膜晶体管的方法

    公开(公告)号:US5817550A

    公开(公告)日:1998-10-06

    申请号:US611318

    申请日:1996-03-05

    摘要: A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

    摘要翻译: 用于在塑料基板上形成薄膜晶体管(TFT)的工艺代替标准薄膜晶体管制造技术,并且使用足够低的处理温度,以便可以使用便宜的塑料基板代替标准玻璃,石英和硅晶片基板 。 该方法依赖于在低温下沉积半导体,电介质和金属的技术; 用脉冲能量源在TFT中结晶和掺杂半导体层; 并创建顶栅自对准以及背栅TFT结构。 该过程使得能够在足够低的温度下制造非晶硅和多晶硅硅TFT,以防止损坏塑料基板。 该方法可用于大面积低成本电子产品,如平板显示器和便携式电子产品。

    Solar cells utilizing pulsed-energy crystallized
microcrystalline/polycrystalline silicon
    5.
    发明授权
    Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon 失效
    采用脉冲能结晶微晶/多晶硅的太阳能电池

    公开(公告)号:US5456763A

    公开(公告)日:1995-10-10

    申请号:US219487

    申请日:1994-03-29

    摘要: A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

    摘要翻译: 一种用于生产诸如太阳能电池的多端子器件的方法,其中使用脉冲高能源来熔化和结晶沉积在衬底上的非晶硅,其对于高加工温度是不耐受的,由此将非晶硅转换成微晶/多晶相 。 可以在制造过程中添加掺杂和氢化,其提供极其平坦的超浅接触的制造,这导致非集流接触体积的减小。 使用脉冲能量束导致在所谓的低温,便宜的塑料基板上制造高效微晶/多晶太阳能电池的能力,这些太阳能电池不耐高温处理。

    Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
    6.
    发明授权
    Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction 失效
    用于将薄膜硅p-n结二极管与磁性隧道结直接集成的工艺

    公开(公告)号:US06933530B2

    公开(公告)日:2005-08-23

    申请号:US10943475

    申请日:2004-09-17

    摘要: A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    摘要翻译: 用于直接集成薄膜硅p-n结二极管与磁性隧道结的方法,用于高性能,非易失性存储器阵列的高级磁随机存取存储器(MRAM)单元。 该方法基于用于在沉积到诸如陶瓷,电介质,玻璃或聚合物的低温基底上的金属的膜上制造垂直多晶硅电子器件结构,特别是p-n结二极管的脉冲激光处理。 该过程保留了典型地沉积器件的底层和结构,例如硅集成电路。 该方法涉及在金属层上的无定形或多晶相中的至少一层硅的低温沉积。 在沉积期间或之后,可以在硅膜中引入掺杂剂。 然后用有效吸收在硅中的短脉冲激光能量照射该膜,这导致膜的结晶并且同时通过超快熔化和固化来激活掺杂剂。 可以在结晶之前或之后对硅膜进行图案化。

    Thin film transistors on plastic substrates
    7.
    发明授权
    Thin film transistors on plastic substrates 失效
    塑料基板上的薄膜晶体管

    公开(公告)号:US06680485B1

    公开(公告)日:2004-01-20

    申请号:US09025006

    申请日:1998-02-17

    IPC分类号: H01L2904

    摘要: A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250° C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

    摘要翻译: 用于在塑料基板上形成薄膜晶体管(TFT)的工艺代替标准薄膜晶体管制造技术,并且使用足够低的处理温度,以便可以使用便宜的塑料基板代替标准玻璃,石英和硅晶片基板 。 通过该方法制造的基于硅的薄膜晶体管包括不能承受大于约250℃的持续处理温度的低温衬底,衬底上的绝缘层,具有掺杂硅的部分的绝缘层上的硅层, 未掺杂的硅和多晶硅,硅层上的栅极介电层,电介质层上的栅极金属层,在硅层和栅极金属层上的部分上的氧化物层,以及金属接触 限定源极,栅极和漏极触点以及互连的硅层和栅极金属层的部分。

    Process for forming retrograde profiles in silicon
    8.
    发明授权
    Process for forming retrograde profiles in silicon 失效
    在硅中形成逆行曲线的工艺

    公开(公告)号:US5565377A

    公开(公告)日:1996-10-15

    申请号:US329959

    申请日:1994-10-27

    摘要: A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

    摘要翻译: 在晶体和多晶硅中形成逆行和振荡分布的方法。 该方法包括将n型或p型掺杂剂引入到硅中,或者使用先前的掺杂硅,然后将硅暴露于高强度激光器或其它合适能量源的多个脉冲,其在短时间内熔化硅。 取决于针对硅的激光脉冲的数量,产生具有从1-1e4变化的峰/表面掺杂剂浓度的逆行曲线。 激光处理可以在空气或真空中进行,硅在室温下或加热至选定的温度。

    Pulsed energy synthesis and doping of silicon carbide
    9.
    发明授权
    Pulsed energy synthesis and doping of silicon carbide 失效
    脉冲能量合成和掺杂碳化硅

    公开(公告)号:US5425860A

    公开(公告)日:1995-06-20

    申请号:US43820

    申请日:1993-04-07

    IPC分类号: C23C14/06 C23C14/58 C23C14/34

    摘要: A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

    摘要翻译: 通过将非晶硅和碳的薄膜共沉积到衬底上来生产β碳化硅薄膜的方法,然后通过暴露于脉冲能量源(例如准分子激光器)照射膜以引起β-SiC化合物的形成 。 可以通过在照射期间引入掺杂气体来产生掺杂的β-SiC。 已经生产了厚度为0.5-1微米的单层,其中较厚的层通过多个处理步骤产生。 由于β碳化硅在27°-730℃的宽温度范围内的电子传输性能优于α碳化硅的这些性能,因此它们具有广泛的应用,例如在高温半导体中,包括异质结双极晶体管 和功率器件,以及高带隙太阳能电池阵列,超硬涂层,发光二极管,传感器等。

    Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    公开(公告)号:US06541316B2

    公开(公告)日:2003-04-01

    申请号:US09746981

    申请日:2000-12-22

    IPC分类号: H01L2100

    摘要: A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.