摘要:
A pressure detection apparatus has a pressure-sensitive resistor whose first resistance varies according to pressure and a change of its own temperature, a temperature-sensitive resistor which has a same resistance-temperature coefficient as the pressure-sensitive resistor and whose second resistance varies according to the change of the temperature, a current source supplying first and second constant-currents to the pressure-sensitive and temperature-sensitive resistors respectively, and a pressure signal generation output section. The current source adjusts the first and second constant-currents so that when the pressure is an initial pressure, a reference first voltage appearing across the pressure-sensitive resistor and a reference second voltage appearing across the temperature-sensitive resistor become equal to each other. The pressure signal generation output section outputs a first voltage signal corresponding to the pressure on the basis of a difference voltage between a first voltage of the pressure-sensitive resistor and a second voltage of the temperature-sensitive resistor.
摘要:
A pressure sensor has a Si device having a first main surface that has a bonded area, a second main surface parallel to the first main surface, a pressure-sensitive resistor formed on the first main surface, and a joining assist pattern formed on the first main surface, and a pressing member bonded to the bonded area on the first main surface and compressing the Si device in a thickness direction. The pressure-sensitive resistor has a first bonded section which is placed within the bonded area of the first main surface and is bonded to the pressing member. The joining assist pattern has a second bonded section which is made of the same material as the first bonded section of the pressure-sensitive resistor and is placed within the bonded area of the first main surface and is bonded to the pressing member.
摘要:
A pressure sensor has a Si device having a first main surface that has a bonded area, a second main surface parallel to the first main surface, a pressure-sensitive resistor formed on the first main surface, and a joining assist pattern formed on the first main surface, and a pressing member bonded to the bonded area on the first main surface and compressing the Si device in a thickness direction. The pressure-sensitive resistor has a first bonded section which is placed within the bonded area of the first main surface and is bonded to the pressing member. The joining assist pattern has a second bonded section which is made of the same material as the first bonded section of the pressure-sensitive resistor and is placed within the bonded area of the first main surface and is bonded to the pressing member.
摘要:
A cooling device for a high voltage electrical unit for a motor of a vehicle, includes: an inverter for controlling the motor that drives the vehicle; an electrical energy storing device for supplying electrical energy to the motor via the inverter; a downverter for decreasing source voltage of the electrical energy storing device, the downverter, the inverter, and the electrical energy storing device disposed under a seat of the vehicle in a concentrated manner; a fan, disposed under the seat, for moving cooling air to the electrical energy storing device and the inverter; an air inlet disposed under the seat and at an end of the seat as viewed in a width direction of the vehicle; and an air outlet disposed under the seat and at the other end of the seat as viewed in a width direction of the vehicle.
摘要:
In a fuel cell powered electric vehicle having a fuel cell system and an electricity storing device for storing electricity generated by the fuel cell system, the fuel cell system and the electricity storing device stored in a box are fixed to a lower side of a floor of a cabin. A plate is provided to separate the fuel cell system and the electricity storing device in the interior of the box from each other. In addition, through holes are provided in the floor of the cabin for connecting between a refrigerant inlet port and a refrigerant outlet port of the electricity storing device and the cabin.
摘要:
A 2-iminoimidazole derivative represented by the formula: {wherein R1, R2 and R3 represent hydrogen, optionally substituted C1-6 alkyl, etc.; R6 represents hydrogen, C1-6 alkyl, C1-6 alkyloxycarbonyl, etc.; Y1 represents a single bond, —CH2—, etc.; Y2 represents a single bond, —CO—, etc.; and Ar represents hydrogen, a group represented by the formula: [wherein R10-R14 represent hydrogen, C1-6 alkyl, hydroxyl, C1-6 alkoxy, etc., and R11 and R12 or R12 and R13 may bond together to form a 5- to 8-membered heterocycle], etc.}or salt thereof.
摘要翻译:由下式表示的2-亚氨基咪唑衍生物:其中R 1,R 2和R 3表示氢,任选取代的C 1-6烷基等; R 6表示氢,C 1-6烷基,C 1-6烷氧羰基等; Y 1表示单键,-CH 2 - 等; Y 2表示单键,-CO-等; 并且Ar表示氢,由下式表示的基团:其中R 10 -R 14表示氢,C 1-6烷基,羟基,C 1-6烷氧基等,R 11和R 12 >或R 12和R 13可以键合在一起形成5-至8-元杂环等}或其盐。
摘要:
A charging element device comprises a positive electrode terminal and a negative electrode terminal which are located at one end of a cylindrical battery case having a positive electrode and a negative electrode equipped therein and which are respectively connected to the positive electrode and the negative electrode, with an electrolyte solution charging opening being formed at the other end of the battery case. The electrolyte solution charging opening is sealed by a plug having a safety valve, and the safety plug reduces an inner pressure of the battery case when the inner pressure is not less than a predetermined pressure.
摘要:
A cap member 4 having electrode terminals 10, 11 which are arranged in an opening 2a, and an insulating seal member 12 insert-molded between both the electrode terminals 10, 11. The electrode terminals 10, 11 are provided with ribs 14, 17, and chemically bond to the layer of an organic compound formed on the surface of the terminals 10, 11. The bottom surface of the rib 17 is placed upwardly of the bottom surface of the rib 14. The resin-molded article 12 contains therein the ribs 14 and 17 formed on both the electrode terminals 10, 11 and chemically bonds to the organic compound layers formed on the surfaces of both the electrode terminals 10, 11.
摘要:
The invention is one which provides in a brake device possessing an energy production unit, a force transmission unit which receives the drive force of the energy production unit and produces outputs by advancing and retreating, and a clutch unit which is provided between the energy production unit and the force transmission unit and maintains the advance and retreat positions of the energy force unit when outputs are produced, a guide structure which allows displacement of the force transmission unit and of the brake shoe in an advance and retreat direction relative to the force transmission unit. A buffer unit is provided in the guide structure which urges the force transmission unit and the brake shoe in separate directions and which, on transmission of a reaction force greater than the maximum output of the force transmission unit, allows the brake shoe to move in the advance and retreat directions.
摘要:
A brake device equipped with an actuator having a power-transmission member generating a pushing force by receiving a drive force so as to advance. A pressure-detection device is provided for detecting the reaction pressure being applied to the power-transmission member and a clearance controller is provided for making the power-transmission member perform a return stroke. A brake shoe is attached to the power-transmission member and generates a braking force on the wheel tread surface. Such clearance controller is provided with a stroke memory unit which detects when the pressure signal from the pressure-detection device has reached a reference value when the pushing force of the power-transmission member is output and memorizes the stroke position of the power-transmission member as the reference stroke position. A computational processor determines the return stroke position by which the power-transmission member is separated from the wheel tread surface and the clearance stroke fraction established in advance using the reference stroke position, when the pushing force is released.