摘要:
A substrate and a semiconductor chip are connected by means of flip-chip interconnection. Around connecting pads of the substrate and input/output terminals of the semiconductor chip, an underfill material is injected. The underfill material is a composite material of filler and resin. Also, a first main surface of the substrate, which is not covered with the underfill material, and the side surfaces of the semiconductor chip are encapsulated with a molding material. The molding material is a composite material of filler and resin. An integrated body of the substrate and the semiconductor chip, which are covered with the molding material, is thinned from above and below.
摘要:
A substrate (1) and a semiconductor chip (5) are connected by means of flip-chip interconnection. Around connecting pads (3) of the substrate (1) and input/output terminals (10) of the semiconductor chip (5), an underfill material (7) is injected. The underfill material (7) is a composite material of filler and resin in which the maximum particle diameter of the filler is 5 μm or below and whose filler content is 40 to 60 wt %. Also, a first main surface of the substrate (1), which is not covered with the underfill material (7), and the side surfaces of the semiconductor chip (5) are encapsulated with a molding material (8). The molding material (8) is a composite material of filler and resin whose filler content is over 75 wt % and in which the glass transition temperature of the resin is over 180° C. An integrated body of the substrate (1) and the semiconductor chip (5), which are covered with the molding material (8), is thinned from above and below.
摘要:
A substrate and a semiconductor chip are connected by means of flip-chip interconnection. Around connecting pads of the substrate and input/output terminals of the semiconductor chip, an underfill material is injected. The underfill material is a composite material of filler and resin. Also, a first main surface of the substrate, which is not covered with the underfill material, and the side surfaces of the semiconductor chip are encapsulated with a molding material. The molding material is a composite material of filler and resin. An integrated body of the substrate and the semiconductor chip, which are covered with the molding material, is thinned from above and below.
摘要:
A substrate (1) and a semiconductor chip (5) are connected by means of flip-chip interconnection. Around connecting pads (3) of the substrate (1) and input/output terminals (10) of the semiconductor chip (5), an underfill material (7) is injected. The underfill material (7) is a composite material of filler and resin in which the maximum particle diameter of the filler is 5 μm or below and whose filler content is 40 to 60 wt %. Also, a first main surface of the substrate (1), which is not covered with the underfill material (7), and the side surfaces of the semiconductor chip (5) are encapsulated with a molding material (8). The molding material (8) is a composite material of filler and resin whose filler content is over 75 wt % and in which the glass transition temperature of the resin is over 180° C. An integrated body of the substrate (1) and the semiconductor chip (5), which are covered with the molding material (8), is thinned from above and below.
摘要:
In a capacitor producing method, a bottom electrode, a thin-film dielectric, and a top electrode are deposited on a substrate so as to form a capacitor, wherein defects including particles and electrical short-circuits between the bottom electrode and the top electrode are detected before the capacitor is divided into capacitor cells. Next, defects such as particles and electrical short-circuits between the bottom electrode and the top electrode are removed before the capacitor is divided into capacitor cells.
摘要:
In a capacitor producing method, a bottom electrode, a thin-film dielectric, and a top electrode are deposited on a substrate so as to form a capacitor, wherein defects including particles and electrical short-circuits between the bottom electrode and the top electrode are detected before the capacitor is divided into capacitor cells. Next, defects such as particles and electrical short-circuits between the bottom electrode and the top electrode are removed before the capacitor is divided into capacitor cells.
摘要:
An interposer integrated with capacitors (100) includes a plug substrate (10) in which via-plugs (12) is formed, and a capacitor substrate (20) in which capacitors are formed. The capacitor substrate (20) includes a substrate body (21), capacitors (22) formed on the main surface of the substrate body, a cover insulating film (25) that covers the capacitors, a terminal electrodes (26) connected to the electrodes of the capacitor and formed on the cover insulating film, electrode pads (24) formed on the rear surface of the substrate body, and via-plugs 23 connecting together the terminal electrodes and electrode pads. The plug substrate (10) includes a substrate body (11), and electrode pads (13) formed on the main surface of the substrate body corresponding to the terminal electrodes of the capacitor substrate, and via-plugs (12) penetrating the substrate body and connected to the electrode pads.
摘要:
A light guide plate (63) includes a light introducing section (65), which is at a position facing a point light source (62), for confining light from the point light source, and a light guide plate main body (64), which has a thickness smaller than a thickness at an end of the light introducing section on the point light source side, for outputting the confined light to an outside from a light outputting surface by light outputting means (70). The light introducing section (65) has an inclined surface (67), which is inclined from a surface of the light introducing section towards a surface of the light guide plate main body (64). The inclined surface (67) has a directivity converting pattern (68) for converting a directivity expansion in a thickness direction of the light guide plate of the light entered to the light introducing section (65) to directivity characteristics tilted towards a direction parallel to a surface direction of the light guide plate. The directivity converting pattern (68) has a structure in which a plurality of V-shaped groove structures (68a) are lined.
摘要:
A measurement control section comprises a time measuring section for controlling an operation of measuring a travel time of an ultrasonic wave. The measurement control section operations, based on a high rate clock signal supplied from a ceramic oscillation circuit during the time measuring operation. A clock control section stops the high rate clock signal supplied from the ceramic oscillation circuit every time when the time measuring section completes its time measuring operation, and uses a low rate clock signal supplied from a quartz oscillation circuit to count a standby time between the end of measuring the travel time and the start of carrying out the next measuring operation.
摘要:
A flow meter measures a flow rate of fluid flowing through a flow passage based on a duration of propagation of an ultrasonic wave along the flow passage. A signal of the received ultrasonic wave is then compared with a reference voltage to detect an arrival of the ultrasonic wave. A voltage setting unit determines the reference voltage to an appropriate level according to a signal output from a propagation measuring unit which measures a duration of propagation of the ultrasonic wave along the flow passage from the start of transmission of the ultrasonic wave to the output of a signal from a judging unit as the reference voltage being changed. The reference voltage is determined readily and accurately, the flow meter measures the flow rate with the appropriate reference voltage.