Abstract:
The present invention relates to a catalytically active composition for the selective methanation of carbon monoxide in reformate streams comprising hydrogen and carbon dioxide, comprising at least one element selected from the group consisting of ruthenium, rhodium, nickel and cobalt as active component and rhenium as dopant on a support material. The catalyst according to the invention is preferably used for carrying out methanation reactions in a temperature range from 100 to 300° C. for use in the production of hydrogen for fuel cell applications.
Abstract:
The invention relates to a nickel hexaaluminate-comprising catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, which comprises hexaaluminate in a proportion in the range from 65 to 95% by weight, preferably from 70 to 90% by weight, and a crystalline, oxidic secondary phase selected from the group consisting of LaAlO3, SrAl2O4 and BaAl2O4 in the range from 5 to 35% by weight, preferably from 10 to 30% by weight. The BET surface area of the catalyst is ≧5 m2/g, preferably ≧10 m2/g. The molar nickel content of the catalyst is ≦3 mol %, preferably ≦2.5 mol % and more preferably ≦2 mol %. The interlayer cations are preferably Ba and/or Sr. The process for producing the catalyst comprises the steps: (i) production of a mixture of metal salts, preferably nitrate salts of Ni and also Sr and/or La, and a nanoparticulate aluminum source, (ii) molding and (iii) calcination. The catalyst of the invention is brought into contact with hydrocarbons, preferably methane, and CO2 in a reforming process, preferably at a temperature of >800° C. The catalyst is also distinguished by structural and preferred properties of the nickel, namely that the nickel particles mostly have a tetragonal form and the particles have a size of ≦50 nm, preferably ≦40 nm and particularly preferably ≦30 nm, and are present finely dispersed as grown-on hexaaluminate particles. The catalyst has only a very low tendency for carbonaceous deposits to be formed.
Abstract:
A method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture, in which an adsorber material is brought into contact with the hydrocarbonaceous gas mixture, wherein the adsorber material comprises a material that adsorbs sulfur-comprising compounds and, in addition, comprises at least one transition metal compound which changes color thereof by reaction with the sulfur-comprising compounds.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, wherein the catalyst comprises one or more zeolites of the MFI, MEL and/or MWW structure type and particles of one or more metal oxides, the one or more zeolites of the MFI, MEL and/or MWW structure type comprising one or more alkaline earth metals, and the particles of the one or more metal oxides comprising phosphorus, the phosphorus being present at least partly in oxidic form, and the one or more alkaline earth metals being selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more thereof, to the preparation and use thereof, and to a process for converting oxygenates to olefins using the catalyst.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, comprising a support substrate and a layer applied to the substrate, wherein the layer comprises one or more zeolites of the MFI, MEL and/or MWW structure type, the one or more zeolites comprising one or more alkaline earth metals, to the preparation and use thereof, and to a process for converting oxygenates to olefins using the catalyst.
Abstract:
The invention relates to a catalyst system and process for preparing dimethyl ether from synthesis gas as well as the use of the catalyst system in this process.
Abstract:
A process for the production of a carbon supported catalyst, which comprises the following steps: (a) precipitation of at least one metal oxide onto a surface of a carbon-comprising support by preparing an initial mixture, comprising the carbon-comprising support, at least one metal oxide precursor and an organic solvent, and spray-drying of the initial mixture to obtain an intermediate product, (b) loading of noble-metal-comprising particles onto the surface of the intermediate product in a liquid medium by deposition, precipitation and/or reduction of a noble-metal-comprising precursor with a reducing agent, (c) heat treatment of the catalyst precursor resulting from step (b) at a temperature higher than 400° C.
Abstract:
The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate. In addition, the invention relates to the use of the catalyst of the invention for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen at elevated pressures which are greater than 5 bar, preferably greater than 10 bar, particularly preferably greater than 20 bar. The catalyst according to the invention is distinguished from the prior art by particular, preferred physicochemical properties.
Abstract:
A process for preparing olefins by reaction of carbon monoxide with hydrogen in the presence of a an iron-comprising heterogeneous catalyst produced by the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partially forming agglomerates; contacting the agglomerates with iron pentacarbonyl; and thermal decomposition of the iron pentacarbonyl to give at least predominantly pore-free and void-free secondary particles.
Abstract:
A process for preparing olefins by reaction of carbon monoxide with hydrogen in the presence of a an iron-comprising heterogeneous catalyst produced by the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partially forming agglomerates; contacting the agglomerates with iron pentacarbonyl; and thermal decomposition of the iron pentacarbonyl to give at least predominantly pore-free and void-free secondary particles.