摘要:
A method for improving the flatness of an oxide layer comprising the steps of providing a semiconductor structure, forming a polysilicon layer on the semiconductor structure, utilizing chemical mechanical polishing to planarize the polysilicon layer, and forming an oxide layer on the polysilicon layer. As a result of using chemical mechanical polishing on the polysilicon layer, an improved flatness of the subsequently formed oxide layer is achieved.
摘要:
A method of enhancing gate lithography performance by polysilicon chemical-mechanical polishing includes depositing a gate polysilicon layer on a semiconductor substrate which has a field oxide isolation structure, and then performing a polysilicon chemical-mechanical polishing after a gate polysilicon layer is deposited in order to smooth the uneven polysilicon surface resulting from the field oxide isolation structure so as to lessen the next lithography process fault because of the non-flatness.
摘要:
A method of forming a trench isolation device capable of reducing corner recess comprising forming a pad oxide layer and a silicon nitride mask layer on a semiconductor base, and forming a trench by etching. Next, a liner oxide layer is formed on the semiconductor base and on the surface of the shallow trench. Then, the silicon nitride mask layer will be etched to reveal the corner. Finally, a layer of oxide is formed on the base to fill up the trench so that the trench isolation device can be completed. The present invention is designed to solve the corner recess problem, reduce generation of kick effect, and enhance the device characteristics and electrical quality.
摘要:
A structure, a system, and a method for manufacture of crosstalk-free wafer level chip scale packaging (WLCSP) structure for high frequency applications is provided. An illustrative embodiment comprises a substrate on which various layers and structures form circuitry, a signal pin formed on the substrate and coupled with the circuitry, a ground ring encircling the signal pin, and a grounded solder bump coupled to the ground ring.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
A manufacturing method of a semiconductor device for a wire-bonding and flip-chip bonding package mainly comprises the following steps. First, a chip having a plurality of bonding pads and a passivation layer exposing the bonding pads is provided. Next, an under bump metallurgy layer having an aluminum layer, a nickel-vanadium layer and a copper layer is formed on each of the bonding pads. Then, a portion of the copper layer and the nickel-vanadium layer formed over some of the bonding pads is removed so as to leave a portion of the copper layer and the nickel-vanadium layer remained over some of the bonding pads to form patterned copper layers and patterned nickel-vanadium layers. Next, a plurality of solder bumps are formed on the patterned copper layers. Finally, a reflowing process is performed to have the solder bumps secured to the patterned copper layers. In addition, a semiconductor device formed by the manufacturing method is provided.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
The interconnecting structure for a semiconductor die includes a die having bonding pads on an active surface; a core attached the side wall (edge) of the die by adhesion material; an isolating base adhered on the active surface of the die by adhesion glue; a through silicon via (TSV) open from the back side of the die to expose the bonding pads; a build up layer coupled between the bonding pads to terminal metal pads by the through silicon via; solder balls melted on terminal pads, wherein the terminal pads located on the core and/or the die.
摘要:
A structure, a system, and a method for manufacture of crosstalk-free wafer level chip scale packaging (WLCSP) structure for high frequency applications is provided. An illustrative embodiment comprises a substrate on which various layers and structures form circuitry, a signal pin formed on the substrate and coupled with the circuitry, a ground ring encircling the signal pin, and a grounded solder bump coupled to the ground ring.