摘要:
A structure, a system, and a method for manufacture of crosstalk-free wafer level chip scale packaging (WLCSP) structure for high frequency applications is provided. An illustrative embodiment comprises a substrate on which various layers and structures form circuitry, a signal pin formed on the substrate and coupled with the circuitry, a ground ring encircling the signal pin, and a grounded solder bump coupled to the ground ring.
摘要:
A structure, a system, and a method for manufacture of crosstalk-free wafer level chip scale packaging (WLCSP) structure for high frequency applications is provided. An illustrative embodiment comprises a substrate on which various layers and structures form circuitry, a signal pin formed on the substrate and coupled with the circuitry, a ground ring encircling the signal pin, and a grounded solder bump coupled to the ground ring.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
A manufacturing method of a semiconductor device for a wire-bonding and flip-chip bonding package mainly comprises the following steps. First, a chip having a plurality of bonding pads and a passivation layer exposing the bonding pads is provided. Next, an under bump metallurgy layer having an aluminum layer, a nickel-vanadium layer and a copper layer is formed on each of the bonding pads. Then, a portion of the copper layer and the nickel-vanadium layer formed over some of the bonding pads is removed so as to leave a portion of the copper layer and the nickel-vanadium layer remained over some of the bonding pads to form patterned copper layers and patterned nickel-vanadium layers. Next, a plurality of solder bumps are formed on the patterned copper layers. Finally, a reflowing process is performed to have the solder bumps secured to the patterned copper layers. In addition, a semiconductor device formed by the manufacturing method is provided.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
The interconnecting structure for a semiconductor die includes a die having bonding pads on an active surface; a core attached the side wall (edge) of the die by adhesion material; an isolating base adhered on the active surface of the die by adhesion glue; a through silicon via (TSV) open from the back side of the die to expose the bonding pads; a build up layer coupled between the bonding pads to terminal metal pads by the through silicon via; solder balls melted on terminal pads, wherein the terminal pads located on the core and/or the die.
摘要:
A method for improving the flatness of an oxide layer comprising the steps of providing a semiconductor structure, forming a polysilicon layer on the semiconductor structure, utilizing chemical mechanical polishing to planarize the polysilicon layer, and forming an oxide layer on the polysilicon layer. As a result of using chemical mechanical polishing on the polysilicon layer, an improved flatness of the subsequently formed oxide layer is achieved.
摘要:
An integrated circuit device with embedded passive component by flip-chip connection is provided which includes a flip chip and a dummy chip. The dummy chip includes at least an embedded passive component, a plurality of redistribution traces and a plurality of flip-chip pads. The flip chip is smaller than the dummy chip and is mounted on a surface of the dummy chip with the flip-chip pads. The embedded passive component is electrically connected to the flip chip via the redistribution traces and the flip-chip pads. A plurality of solder balls are placed at the peripheral region of the surface of the dummy chip.
摘要:
A chip structure comprising a substrate, a circuitry unit, a plurality of bonding pads, a first passivation layer and a redistribution layer is provided. The circuitry unit is disposed on the substrate, and the bonding pads are disposed on the circuitry unit. Moreover, the first passivation layer is disposed on the circuitry unit and exposes the bonding pads. The redistribution layer of a Ti/Cu/Ti multi-layered structure is disposed on the first passivation layer, and is electrically connected with the bonding pads. In addition, the redistribution layer of a Ti/Cu/Ti multi-layered structure has excellent conductivity such that electrical characteristics of the chip structure are enhanced effectively.
摘要翻译:提供了包括基板,电路单元,多个接合焊盘,第一钝化层和再分配层的芯片结构。 电路单元设置在基板上,并且接合焊盘设置在电路单元上。 此外,第一钝化层设置在电路单元上并且暴露接合焊盘。 Ti / Cu / Ti多层结构的再分布层设置在第一钝化层上,并与接合焊盘电连接。 此外,Ti / Cu / Ti多层结构的再分布层具有优异的导电性,使得芯片结构的电特性得到有效的提高。