摘要:
A plurality of microelectronic assemblies (60) are made by severing an in-process unit including an upper substrate (40) and lower substrate (20) with microelectronic elements (36) disposed between the substrates. In a further embodiment, a lead frame (452) is joined to a substrate (440) so that the leads project from this substrate. Lead frame (452) is joined to a further substrate (470) with one or more microelectronic elements (436, 404, 406) disposed between the substrates.
摘要:
A plurality of microelectronic assemblies are made by severing an in-process unit including an upper substrate and lower substrate with microelectronic elements disposed between the substrates. In a further embodiment, a lead frame is joined to a substrate so that the leads project from this substrate. Lead frame is joined to a further substrate with one or more microelectronic elements disposed between the substrates.
摘要:
A plurality of microelectronic assemblies are made by severing an in-process unit including an upper substrate and lower substrate with microelectronic elements disposed between the substrates. In a further embodiment, a lead frame is joined to a substrate so that the leads project from this substrate. Lead frame is joined to a further substrate with one or more microelectronic elements disposed between the substrates.
摘要:
A plurality of microelectronic assemblies (60) are made by severing an in-process unit including an upper substrate (40) and lower substrate (20) with microelectronic elements (36) disposed between the substrates. In a further embodiment, a lead frame (452) is joined to a substrate (440) so that the leads project from this substrate. Lead frame (452) is joined to a further substrate (470) with one or more microelectronic elements (436, 404, 406) disposed between the substrates.
摘要:
A method of making a stacked microelectronic assembly includes providing a first microelectronic package that includes a first substrate having a first dielectric layer, conductive posts, and conductive traces extending along the surface of the first dielectric layer; providing a second microelectronic package including a second substrate that includes a second dielectric layer; securing a microelectronic element to one of the surfaces of at least one of the first or second substrates; and joining the conductive posts of the first substrate with the fusible masses of the second substrate. The posts may include a plurality of aligned posts which are aligned in a first row extending in a single orthogonal direction along a surface of the first substrate away from a portion of the first substrate that faces a face of the microelectronic element. The aligned posts are disposed beyond one of the edges of the microelectronic element.
摘要:
A dielectric structure is formed by a molding process, so that a first surface of a dielectric structure is shaped by contact with the mold. The opposite second surface of the dielectric structure is applied onto the front surface of a wafer element. The dielectric layer may include protruding bumps and terminals may be formed on the bumps. The bumps may be of a precise height. The terminals lie at a precisely controlled height above the front surface of the wafer element. The terminals may include projecting posts which extend above a surrounding solder mask layer to facilitate engagement with a test fixture. The posts are immersed within solder joints when the structure is bonded to a circuit panel.
摘要:
Substrates having molded dielectric layers and methods of fabricating such substrates are disclosed. The substrates may advantageously be used in microelectronic assemblies having high routing density.
摘要:
Substrates having molded dielectric layers and methods of fabricating such substrates are disclosed. The substrates may advantageously be used in microelectronic assemblies having high routing density.
摘要:
Substrates having molded dielectric layers and methods of fabricating such substrates are disclosed. The substrates may advantageously be used in microelectronic assemblies having high routing density.
摘要:
A method is provided for manufacturing a multilayer substrate. An insulating layer can have a hole overlying a patterned second metal layer. In turn, the second metal layer can overlie a first metal layer. A third metal layer can be electroplated onto the patterned second metal layer within the hole, the third metal layer extending from the second metal layer onto a wall of the hole. When plating the third metal layer, the first and second metal layers can function as a conductive commoning element.