摘要:
The present invention provides an X-ray detector assembly and a fabrication method, where the X-ray detector assembly comprises a scintillator material disposed on a detector matrix array disposed on a detector substrate; an encapsulating coating disposed on the scintillator material; a moisture resistant cover disposed over the detector substrate and the encapsulating coating, and an adhesive material disposed between the detector substrate and the moisture resistant cover so as to form a moisture vapor barrier. The adhesive material is disposed so that it is not in contact with the encapsulating coating. The fabrication method of the X-ray detector assembly includes the steps of disposing the encapsulating coating on the scintillator material and a portion of the detector substrate and removing the encapsulating coating from the portion of the detector substrate.
摘要:
The present invention provides an X-ray detector assembly and a fabrication method, where the X-ray detector assembly comprises a scintillator material disposed on a detector matrix array disposed on a detector substrate; an encapsulating coating disposed on the scintillator material; a moisture resistant cover disposed over the detector substrate and the encapsulating coating, and an adhesive material disposed between the detector substrate and the moisture resistant cover so as to form a moisture vapor barrier. The adhesive material is disposed so that it is not in contact with the encapsulating coating. The fabrication method of the X-ray detector assembly includes the steps of disposing the encapsulating coating on the scintillator material and a portion of the detector substrate and removing the encapsulating coating from the portion of the detector substrate.
摘要:
One method for packaging at least one circuit chip includes: providing an interconnect layer including insulative material having a first side and a second side, initial metallization patterned on second side metallized portions of the second side and not on second side non-metallized portions of the second side, at least one substrate via extending from the first side to one of the second side metallized portions, and at least one chip via extending from the first side to one of the second side non-metallized portions; positioning the at least one circuit chip on the second side with at least one chip pad of the at least one circuit chip being aligned with the at least one chip via; and patterning connection metallization on selected portions of the first side of the interconnect layer and in the vias so as to extend to the at least one second side metallized portion and to the at least one chip pad. In related embodiments vias are pre-metallized and coupled to chip pads of the circuit chips by an electrically conductive binder. Thin film passive components and multilayer interconnections can additionally be incorporated into the package.
摘要:
One method for packaging at least one circuit chip includes: providing an interconnect layer including insulative material having a first side and a second side, initial metallization patterned on second side metallized portions of the second side and not on second side non-metallized portions of the second side, at least one substrate via extending from the first side to one of the second side metallized portions, and at least one chip via extending from the first side to one of the second side non-metallized portions; positioning the at least one circuit chip on the second side with at least one chip pad of the at least one circuit chip being aligned with the at least one chip via; and patterning connection metallization on selected portions of the first side of the interconnect layer and in the vias so as to extend to the at least one second side metallized portion and to the at least one chip pad. In related embodiments vias are pre-metallized and coupled to chip pads of the circuit chips by an electrically conductive binder. Thin film passive components and multilayer interconnections can additionally be incorporated into the package.
摘要:
A method of making a solid state thermal transfer device includes first and second electrically conductive substrates that are positioned opposite from one another. The solid state thermal transfer device also includes a sealing layer disposed between the first and second electrically conductive substrates and a plurality of hollow structures having a conductive material, wherein the plurality of hollow structures is contained by the sealing layer between the first and second electrically conductive substrates.
摘要:
A refrigeration system is provided. The refrigeration system includes at least one thermal blocking thermotunneling device. The thermal blocking thermotunneling device comprises a first and a second surface separated by a nanoscale gap of less than about 20 nm, such that tunneling of electrons causes a unidirectional transfer of heat from the first surface to the second surface. Further, the at least one thermal blocking thermotunneling device has a thermal back path of less than about 70 percent.
摘要:
A light source includes a substrate; an array of un-packaged light emitting semiconductor devices (LESDs), each of the LESDs having at least one surface for emitting light and a substrate surface being attached to the substrate; and a plurality of electrical connections, each electrical connection coupled for providing electrical power to a respective LESD. The LESDs are arranged on the substrate with sufficient density and light generating capability to provide a predetermined irradiation from the light source.
摘要:
A method for interconnecting high-temperature silicon carbide (SiC) devices enables such high-temperature devices to be used in fabricating electronic circuits of significant scale. This method comprises empirically measuring operational characteristics of a plurality of the devices to be interconnected, the operational characteristics comprising devices which are measured to be non-working and devices which are measured to be working; characterizing the operational characteristics in an operational characteristics map; designing interconnection paths between and among the devices that are characterized to be working by the operational characteristics map; and excluding from the interconnection paths, devices that are characterized to be non-working by the operational characteristics map. A preferred embodiment of this method further includes disposing a temporary polymer layer over the devices; forming via holes through the temporary polymer layer, to bonding pads of the devices; applying a current-balancing resistive metal over the temporary polymer layer; establishing connections between the current-balancing resistive metal and the bonding pads; designing the interconnection paths between and among the working devices by patterning the current-balancing resistive metal based on the operational characteristics map; and removing the temporary polymer layer.
摘要:
A method for coupling electrically conductive bushings in a bus, including alternating layers of dielectric material and patterned, electrically conductive bus bars and having through holes therein with each through hole having a surface exposing a portion of a respective one of the bus bars, includes: applying a polymer mixture to the surface of each through hole; inserting the bushings in the respective through holes; and curing the polymer mixture by positioning the bus and bushings in a curing chamber, applying a vacuum to the curing chamber, and applying pressure to reduce voids in the polymer mixture and minimize further void formation.
摘要:
A high density interconnected multi-chip module is provided with a stress-reducing compliant material disposed around the chips prior to molding a polymeric substrate around the chips. Chips having contact pads are placed face down on a layer of adhesive supported by a base. A compliant material is deposited around the chips, and then a mold form is positioned around the chips. Polymeric substrate molding material is added within the mold form, and then the substrate molding material is hardened. A dielectric layer having vias aligned with predetermined ones of the contact pads and having an electrical conductor extending through the vias is situated on the hardened substrate molding material and faces of the chips. A thermal plug may be affixed to the backside of a chip prior to the addition of substrate molding material.