摘要:
The present invention relates especially to a process for the localized distribution of drops of a liquid of interest on an active surface. The process comprises the following steps: an introduction of liquid of interest into a box containing the said active surface, and an extraction of liquid of interest from the said box, the said active surface and also the other surfaces inside the box being substantially non-wetting with respect to the liquid of interest, with the exception of several uptake areas localized on the said active surface, which are each suitable for taking up a drop of liquid of interest. The uptake areas may surround working areas. The present invention also relates to processes for the electrochemical and optical detection of at least one analyte in a liquid of interest, and to an electropolymerization process.
摘要:
The present invention relates to an operating device characterized in that it comprises an active surface that is substantially non-wetting with respect to a liquid of interest; at least one zone for the localized capture of a drop of said liquid formed on said active surface; at least one operating zone arranged with a capture zone in such a way that the operating zone is at least partially covered by the drop of the liquid when said drop is captured by said capture zone; and means for leaving a drop of said liquid on said capture zone. This device makes it possible in particular to form high-density arrays of drops of said liquid on a surface, with the aim in particular of carrying out chemical and/or biochemical reactions and/or of analysing the liquid of interest in each drop. It finds, for example, an application in biological chips.
摘要:
The present invention relates especially to a process for the localized distribution of drops of a liquid of interest on an active surface. The process comprises the following steps an introduction of liquid of interest into a box containing the said active surface, and an extraction of liquid of interest from the said box, the said active surface and also the other surfaces inside the box being substantially non-wetting with respect to the liquid of interest, with the exception of several uptake areas localized on the said active surface, which are each suitable for taking up a drop of liquid of interest. The uptake areas may surround working areas. The present invention also relates to processes for the electrochemical and optical detection of at least one analyte in a liquid of interest, and to an electropolymerization process.
摘要:
The present invention relates to a work device (1) comprising work zones. It can be used to obtain a matrix of drops on a surface, using a liquid of interest (E). It comprises a work box (Bo) provided with means (o, s) for introducing and extracting the liquid respectively into and from the box; a substrate (S) comprising an active surface that is substantially non-wetting for said liquid of interest contained in said box; distinct work zones (Zt) formed on said active surface and each surrounded by a border (b) formed on said active surface, the borders not touching one another and having no common edge and having a geometry such that when the liquid of interest is extracted from the box, a drop (g) of the liquid of interest remains imprisoned by each border and in contact with the work zone that it surrounds.
摘要:
The method for controlling the progression of a fluid, from upstream to downstream, in a microfluidic component comprising for example a plurality of microchannels each comprising a plurality of successive reaction or detection zones and a plurality of passive valves, controls the progression of the fluid in the microchannels by controlling the increase of a pressure difference between upstream and downstream of the component. The method controls the pressure difference increase discontinuously in the form of enabling pulses so as in particular to synchronize passing of the corresponding passive valves of the microchannels. The pressure difference is advantageously adjusted to a zero value between two successive enabling pulses.
摘要:
The method for controlling the progression of a fluid, from upstream to downstream, in a microfluidic component comprising for example a plurality of microchannels each comprising a plurality of successive reaction or detection zones and a plurality of passive valves, controls the progression of the fluid in the microchannels by controlling the increase of a pressure difference between upstream and downstream of the component. The method controls the pressure difference increase discontinuously in the form of enabling pulses so as in particular to synchronize passing of the corresponding passive valves of the microchannels. The pressure difference is advantageously adjusted to a zero value between two successive enabling pulses.
摘要:
The invention relates to a device for preparing and/or treating a biological sample including an assembly (2) of storage chambers (3) and/or reaction chambers intended for receiving a fluid and means arranged to move an amount of fluid from and/or to at least one of the chambers (3) of the assembly (2) of chambers (3), the chambers (3) being separated by walls (5) so as to form an assembly of adjacent chambers (3) aligned in a given direction. The means arranged to move an amount of fluid include a needle (6) connected to a transfer space (9), means (8) arranged to enable the suction of a liquid towards a chamber (3) from a transfer space (9) via a needle or delivery from the transfer space (9) to a chamber (3), and driving means (7) arranged to translate the needle (6) and the assembly (2) of chambers relative to one another in the chamber (3) alignment direction, and in that two adjacent chambers (3) are separated by a wall including a sealing membrane (5) or septum capable of being pierced by the needle (6) and of then recovering the seal thereof once the needle is removed. The invention also relates to a method for manufacturing such a device.
摘要:
A microfluidic device comprising first and second substrates respectively including first and second hydrophobic layers based on polysiloxane, said hydrophobic layers each comprising an assembly area. The substrates are assembled with each other at said assembly areas by means of an adhesive based on silicone.
摘要:
A method for successively functionalizing a substrate whose surface is provided with at least two areas (1, 2) made up of different materials, with at least one chemical substrate, characterized in that the functionalization is carried out without masking and consists (a) in functionalizing a first area (1) without masking the second area (2) or possible successive areas by transforming the substrate with the aid of a chemical substance X1, wherein the first area material reactivity is greater with respect to the reactivity of the substance X1 than the reactivity of the other possible successive areas with respect thereto, and (b1) in treating the second area (2) or the other possible successive areas with a chemical substance Y1 for removing reaction products deposited on said areas during the functionalization from the areas of the substance X1 and/or the possible successive areas without damaging the functionalized surface of the first area.
摘要:
The invention relates to a device for preparing and/or treating a biological sample including an assembly (2) of storage chambers (3) and/or reaction chambers intended for receiving a fluid and means arranged to move an amount of fluid from and/or to at least one of the chambers (3) of the assembly (2) of chambers (3), the chambers (3) being separated by walls (5) so as to form an assembly of adjacent chambers (3) aligned in a given direction. The means arranged to move an amount of fluid include a needle (6) connected to a transfer space (9), means (8) arranged to enable the suction of a liquid towards a chamber (3) from a transfer space (9) via a needle or delivery from the transfer space (9) to a chamber (3), and driving means (7) arranged to translate the needle (6) and the assembly (2) of chambers relative to one another in the chamber (3) alignment direction, and in that two adjacent chambers (3) are separated by a wall including a sealing membrane (5) or septum capable of being pierced by the needle (6) and of then recovering the seal thereof once the needle is removed. The invention also relates to a method for manufacturing such a device.