Abstract:
In a semiconductor device, a first lead frame and a second lead frame are fixed to a metal conductor base by an organic insulating film made of a polyimide-based material. The organic insulating film satisfies relationships of tpress1>tcast1 and tpress2>tcast1, where tpress1 is a thickness of a portion of the organic insulating film sandwiched between the metal conductor base and the first lead frame, tpress2 is a thickness of a portion of the organic insulating film sandwiched between the metal conductor base and the second lead frame, and tcast1 is a thickness of a portion of the organic insulating film that is not sandwiched between the metal conductor base and the first lead frame and is not sandwiched between the metal conductor base and the second lead frame.
Abstract:
A semiconductor device includes a semiconductor chip formed using a silicon carbide and having electrodes on a first surface and a second surface opposite to the first surface, a terminal disposed adjacent to the first surface and connected to the electrode on the first surface through a bonding member, and a heat sink disposed adjacent to the second surface and connected to the electrode on the second surface through a bonding member. The first surface is a (0001) plane and a thickness direction of the semiconductor chip corresponds to a [0001] direction. Of the distances between the end portions of the semiconductor chip having a square two-dimensional shape and the end portions of the terminal having a rectangular two-dimensional shape, the shortest distance L1 in a [1-100] direction is shorter than the shortest distance L2 in a [11-20] direction.
Abstract:
A power conversion device is capable of achieving three requirements to restrict a surge voltage, ensure high radiation performance of SW elements, and restrict ringing at the same time. In a power conversion device, element modules of two SW elements are stacked in a thickness direction via an insulating layer in such a manner that lateral surfaces are aligned parallel to each other in a same orientation, and a positive terminal of one SW element and a negative terminal of the other SW element are disposed so as to overlap each other in the thickness direction.
Abstract:
A semiconductor module includes: a semiconductor element having a first main electrode and a second main electrode; a first conductive member and a second conductive member connected to the first main electrode and the second main electrode, respectively, and placed to sandwich the semiconductor element; and a main terminal including a first main terminal continuous from the first conductive member and a second main terminal continuous from the second conductive member. The main terminal has a facing portion, a non-facing portion, a first connection portion, and a second connection portion. In a width direction, a formation position of the second connection portion overlaps with a formation position of the first connection portion.
Abstract:
In a semiconductor device, heat radiation plates are respectively disposed on a front surface side and a rear surface side of semiconductor chips in an upper arm and a lower arm. A lead-out conductor part includes a parallel conductor that includes a positive electrode terminal, a negative electrode terminal, and an insulating film disposed between the positive electrode terminal and the negative electrode terminal, and the positive electrode terminal and the negative electrode terminal are disposed oppositely while sandwiching the insulation film. The semiconductor chips are covered by a resin mold part, surfaces of the heat radiation plates opposite to the semiconductor chips, a part of the positive electrode terminal, and a part of the negative electrode terminal are exposed from the resin mold part, and at least a part of the parallel conductor in the lead-out conductor part enters the resin mold part.
Abstract:
In a semiconductor device, heat radiation plates are respectively disposed on a front surface side and a rear surface side of semiconductor chips in an upper arm and a lower arm. A lead-out conductor part includes a parallel conductor that includes a positive electrode terminal, a negative electrode terminal, and an insulating film disposed between the positive electrode terminal and the negative electrode terminal, and the positive electrode terminal and the negative electrode terminal are disposed oppositely while sandwiching the insulation film. The semiconductor chips are covered by a resin mold part, surfaces of the heat radiation plates opposite to the semiconductor chips, a part of the positive electrode terminal, and a part of the negative electrode terminal are exposed from the resin mold part, and at least a part of the parallel conductor in the lead-out conductor part enters the resin mold part.
Abstract:
A semiconductor module includes a resin molded part encapsulating a semiconductor chip, a first terminal having a plate shape, and a second terminal having a plate shape. The first terminal and the second terminal are disposed on top of the other in a thickness direction. The first terminal is exposed from a first surface of the resin molded part, and the second terminal is projected from a second surface of the resin molded part to an outside of the resin molded part, the second surface being different from the first surface from which the first terminal is exposed.
Abstract:
The semiconductor device includes a semiconductor element, a first conductive member, a second conductive member, an insulating member, a first main terminal, and a second main terminal. The first main terminal and the second main terminal, respectively, extend from the first conductive member and the second conductive member. The first main terminal and the second main terminal, respectively, have a first projecting portion and a second projecting portion projecting outside of the insulating member. The first projecting portion and the second projecting portion, respectively, have a first facing portion and a second facing portion at which plate surfaces of the first and second projecting portions face each other across a gap, and a first non-facing portion and a second non-facing portion at which the plate surfaces of the first and second projecting portions do not face each other.
Abstract:
In a semiconductor device, a plurality of semiconductor chips included in an upper-arm circuit are connected in parallel between a pair of upper-arm plates, while a plurality of semiconductor chips included in a lower-arm circuit are connected in parallel between a pair of lower-arm plates. In each of the arm circuits, the plurality of semiconductor chips are arranged in a direction perpendicular to a direction in which emitter electrodes and pads are arranged, the pads are disposed on the same side of the emitter electrodes, and signal terminals extend in the same direction. A series-connecting part between the upper- and lower-arm circuits includes a joint part 20 continued to respective side surfaces of the corresponding upper- and lower-arm plates. Each of inductances of respective parallel-connecting parts of the upper- and lower-arm plates which connect the semiconductor chips in parallel is smaller than an inductance of the series-connecting part.
Abstract:
A semiconductor module is configured such that heat radiation substrates are connected to lead frames and semiconductor chips are directly connected to the lead frames, so that the semiconductor chips are not connected to the lead frames through conductive portions of the heat radiation substrates. Therefore, the conductive portions can have a solid shape without being divided. As such, an occurrence of curving of the heat radiation substrates is suppressed when a temperature is reduced from a high temperature to a room temperature after resin-sealing at the high temperature or the like. Therefore, connection between the semiconductor chip and the lead frames and connection between the lead frames and the heat radiation substrates enhance.