Abstract:
To reduce the thickness and improve the operability. It includes a first housing and a second housing placed on top of each other, and connecting means to connect the first and second housings, the connecting means being interposed between the first and second housings, wherein the connecting means engages with the first housing so as to be slidable in at least one direction with respect to the first housing, and engages with the second housing so as to be rotatable with respect to the second housing.
Abstract:
The present invention provides a method of purifying an antibody by protein A affinity chromatography. More specifically, the present invention provides a technique relating to an elution buffer solution which provides a good antibody recovery rate without denaturation.
Abstract:
The present invention provides a method for producing a protein which has a restored native higher-order structure by bringing a protein which has lost its native higher-order structure into contact at pH 6.5 to 9.0 with a 1 to 3% aqueous solution of a specific surfactant, such as lauroylglutamic acid to obtain a solubilized solution of the protein; and then adding the solubilized solution to a buffer with pH 6.5 to 9.0 containing arginine or an arginine derivative at a concentration of 0.1 to 1.2 M to lower the concentration of the specific surfactant, such as lauroylglutamic acid, in the obtained mixture solution down to 0.02 to 0.275%. According to the present invention, it is possible to easily restore the native higher-order structure of a protein while smoothly removing the surfactant from the protein.
Abstract:
A resin layer covering a semiconductor chip on a wiring board is composed of a first resin layer and a second resin layer, wherein the first resin layer and the second resin layer differ in their plan view pattern, satisfying a relation of a
Abstract:
The present invention provides a method for conveniently producing a protein formulation in which viruses are inactivated, without impairing the quality of the obtained protein formulation, characterized by including the step of exposing the protein formulation contaminated with the viruses to a 0.1-2M aqueous solution of arginine, an arginine derivative, or a mixture thereof, the aqueous solution being adjusted to pH 3.5 to 5. The present invention also provides a virus inactivation method characterized by including the step of contacting a virus-containing object with a 0.1-2M aqueous solution of arginine, an arginine derivative, or a mixture thereof, the aqueous solution being adjusted to pH 3.5 to 5.
Abstract:
A semiconductor module includes a wiring board having a bottom surface and a top surface. A first solder electrode terminal has a given melting point, and is provided on the bottom surface of the wiring board. An electrode pad is provided on or above the top surface of the wiring board, and a second solder electrode terminal is soldered to the electrode pad at a temperature corresponding to the given melting point of the first solder electrode terminal by using a reflow process. The second solder electrode terminal contains an additional metal powder component diffused therein when being soldered to the electrode pad.
Abstract:
A folding portable device in which a first case and a second case are foldably connected and which can be opened by a simple operation even when a thickness of the case is reduced includes support means for supporting the first case with respect to the second case in a relatively displaceable manner within a specified range and opening assistance means of which an open lock is unlocked when the first case is displaced more than a predetermined amount.
Abstract:
The present invention provides a method for conveniently producing a protein formulation in which viruses are inactivated, without impairing the quality of the obtained protein formulation, characterized by including the step of exposing the protein formulation contaminated with the viruses to a 0.1-2M aqueous solution of arginine, an arginine derivative, or a mixture thereof, the aqueous solution being adjusted to pH 3.5 to 5. The present invention also provides a virus inactivation method characterized by including the step of contacting a virus-containing object with a 0.1-2M aqueous solution of arginine, an arginine derivative, or a mixture thereof, the aqueous solution being adjusted to pH 3.5 to 5.
Abstract:
In a semiconductor module including a wiring board having a top surface and a bottom surface, a passive element device Is soldered on the top surface of the wiring board by a first solder material, and an external solder electrode terminal is adhered on the bottom surface of the wiring board and made of a second solder material. The first solder material has a higher melting point than that of the second solder material.
Abstract:
Aiming at adjusting the height of bump electrodes connected to lands on a substrate, a semiconductor device 100 has a first interconnect substrate 103 and a second interconnect substrate 101. On one surface of these substrates, first lands 111 and second lands 113 are provided. The plane geometry of the second lands 113 is a polygon characterized by the inscribed circle thereof having an area smaller than the area of the inscribed circle of the first land.