摘要:
Embodiments of the invention are directed toward the deposition of Graphene on a semiconductor substrate. In some embodiments, these processes can occur at low temperature levels during a back end of the line process. For example, Graphene can be deposited in a CVD reactor at a processing temperature that is below 600° C. to protect previously deposited layers that may be susceptible to sustained higher temperatures. Graphene deposition can include the deposition of an underlayer (e.g., cobalt) followed by the flow of a carbon precursor (e.g., acetylene) at the processing temperature. Graphene can then be synthesized with during cooling, an RTP cure, and/or a UV cure.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, said method comprising the steps of: a) applying a first portion of a sculptured layer with sufficiently low substrate bias that a surface onto which said sculptured layer is applied is not eroded away or contaminated in an amount which is harmful to said semiconductor device performance or longevity; and b) applying a subsequent portion of said sculptured layer with sufficiently high substrate bias to sculpture a shape from said the first portion, while depositing additional layer material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces and is especially helpful when the conductive layer is copper. In the application of a barrier layer, a first portion of barrier layer material is deposited on the substrate surface using standard sputtering techniques or using an ion deposition plasma, but in combination with sufficiently low substrate bias voltage (including at no applied substrate voltage) that the surfaces impacted by ions are not sputtered in an amount which is harmful to device performance or longevity. Subsequently, a second portion of barrier material is applied using ion deposition sputtering at increased substrate bias voltage which causes resputtering (sculpturing) of the first portion of barrier layer material, while enabling a more anisotropic deposition of newly depositing material. A conductive material, and particularly a copper seed layer applied to the feature may be accomplished using the same sculpturing technique as that described above with reference to the barrier layer.
摘要:
In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes positioning a substrate having an underlying tungsten layer within a process chamber and depositing a tungsten-containing barrier layer on the underlying tungsten layer during a cyclical layer deposition process. The tungsten-containing barrier layer contains a refractory metal nitride material. The method further provides depositing a seed layer on the tungsten-containing barrier layer during a vapor deposition process and depositing a bulk tungsten layer on the seed layer during a chemical vapor deposition process.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, said method comprising the steps of: a) applying a first portion of a sculptured layer with sufficiently low substrate bias that a surface onto which said sculptured layer is applied is not eroded away or contaminated in an amount which is harmful to said semiconductor device performance or longevity; and b) applying a subsequent portion of said sculptured layer with sufficiently high substrate bias to sculpture a shape from said the first portion, while depositing additional layer material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces and is especially helpful when the conductive layer is copper. In the application of a barrier layer, a first portion of barrier layer material is deposited on the substrate surface using standard sputtering techniques or using all ion deposition plasma, but in combination with sufficiently low substrate bias voltage (including at no applied substrate voltage) that the surfaces impacted by ions are not sputtered in an amount which is harmful to device performance or longevity. Subsequently, a second portion of barrier material is applied using ion deposition sputtering at increased substrate bias voltage which causes resputtering (sculpturing) or the first portion of barrier layer material, while enabling a more anisotropic deposition of newly depositing material. A conductive material, and particularly a copper seed layer applied to the feature may be accomplished using the same sculpturing technique as that described above with reference to the barrier layer.
摘要:
The invention provides a method for forming a microelectronic device comprising: forming a first electrode; depositing an adhesion layer over the first electrode utilizing high density plasma physical vapor deposition, wherein the adhesion layer comprises a material selected from Ta, TaNx, W, WNx, Ta/TaNx, W/WNx, and combinations thereof, depositing a dielectric layer over the adhesion layer; and forming a second electrode over the dielectric layer. The invention also provides a microelectronic device comprising: a first electrode; a second electrode; a dielectric layer disposed between the first and second electrodes; and an adhesion layer disposed between the first electrode and the dielectric layer, wherein the adhesion layer comprises a material selected from Ta, TaNx, W, WNx, Ta/TaNx, W/WNx, and combinations thereof.
摘要:
A copper metallization structure in which a layer of a copper alloy, such as Cu--Mg or Cu--Al is deposited over a silicon oxide based dielectric layer and a substantially pure copper layer is deposited over the copper alloy layer. The copper alloy layer serves as a seed or wetting layer for subsequent filling of via holes and trenches with substantially pure copper. Preferred examples of the alloying elements and their atomic alloying percentage include magnesium between 0.05 and 6% and aluminum between 0.05 and 0.3%. Further examples include boron, tantalum, tellurium, and titanium. Preferably, the copper alloy is deposited cold in a sputter process, but, during the deposition of the pure copper layer or afterwards in a separate annealing step, the temperature is raised sufficiently high to cause the alloying element of the copper alloy to migrate to the dielectric layer and form a barrier there against diffusion of copper into and through the dielectric layer. This barrier also promotes adhesion of the alloy layer to the dielectric layer, thereby forming a superior wetting and seed layer for subsequent copper full-fill techniques. Filling of the alloy-lined feature can be accomplished using PVD, CVD, or electro/electroless plating.
摘要:
Copper and a small amount of an alloying metal such as magnesium or aluminum are cosputtered onto a substrate having oxide on at least a portion of its surface. Either the wafer is held at an elevated temperature during deposition or the sputtered film is annealed without the wafer being exposed to ambient. Due to the high temperature, the alloying metal diffuses to the surface. If a surface is exposed to a low partial pressure of oxygen or contacts silicon dioxide, the magnesium or aluminum forms a thin stable oxide. The alloying metal oxide encapsulates the copper layer to provide a barrier against copper migration, to form an adhesion layer over silicon dioxide, and to act as a seed layer for the later growth of copper, for example, by electroplating.
摘要:
A metal/metal nitride barrier layer for semiconductor device applications. The barrier layer is particularly useful in contact vias where high conductivity of the via is important, and a lower resistivity barrier layer provides improved overall via conductivity.
摘要:
A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, said method comprising the steps of a) applying a first portion of a sculptured layer with sufficiently low substrate bias that a surface onto which said sculptured layer is applied is not eroded away or contaminated in an amount which is harmful to said semiconductor device performance or longevity; and b) applying a subsequent portion of said sculptured layer with sufficiently high substrate bias to sculpture a shape from said the first portion, while depositing additional layer material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces and is especially helpful when the conductive layer is copper. In the application of a barrier layer, a first portion of barrier layer material is deposited on the substrate surface using standard sputtering techniques or using an ion deposition plasma, but in combination with sufficiently low substrate bias voltage (including at no applied substrate voltage) that the surfaces impacted by ions are not sputtered in an amount which is harmful to device performance or longevity. Subsequently, a second portion of barrier material is applied using ion deposition sputtering at increased substrate bias voltage which causes resputtering (sculpturing) of the first portion of barrier layer material, while enabling a more anisotropic deposition of newly depositing material. A conductive material, and particularly a copper seed layer applied to the feature may be accomplished using the same sculpturing technique as that described above with reference to the barrier layer.