Abstract:
An integrated circuit including a gate electrode is disclosed. One embodiment provides a transistor including a first source/drain electrode and a second source/drain electrode. A channel is arranged between the first and the second source/drain electrode in a semiconductor substrate. A gate electrode is arranged adjacent the channel layer and is electrically insulated from the channel layer. A semiconductor substrate electrode is provided on a rear side. The gate electrode encloses the channel layer at least two opposite sides.
Abstract:
The invention relates to a method of fabricating an integrated circuit, including the steps of providing at least one layer; performing a first implantation step, wherein particles are implanted into the layer under a first direction of incidence; performing a second implantation step, wherein particles are implanted into the layer under a second direction of incidence which is different from the first direction of incidence; performing a removal step, wherein the layer is partially removed depending on the local implant dose generated by the first and the second implantation step.
Abstract:
In one aspect, a method of forming a structure on a substrate is disclosed. For example, the method includes forming a first mask layer and a second mask layer, modifying a material property in regions of the first and second mask layers, and forming the structure based on the modified regions.
Abstract:
Memory cells having a cell capacitor and a cell transistor, which are arranged in a vertical cell structure, are provided in the cell array of a DRAM. By means of a deep implantation or a shallow implantation with subsequent epitaxial growth of silicon, a buried source/drain layer is formed, from which lower source/drain regions of the cell transistors emerge. The upper edge of the buried source/drain layer can be aligned with respect to a lower edge of a gate electrode of the cell transistor, which consequently results in a reduction of a gate/drain capacitance and also a leakage current between the gate electrode and the lower source/drain region. A gate conductor layer structure is applied and there are formed, from the gate conductor layer structure, in a controlled transistor array, gate electrode structures of control transistors and, in the cell array, a body connection structure for the connection of body regions of the cell transistors.
Abstract:
A hard mask layer stack for patterning a layer to be patterned includes a carbon layer disposed on top of the layer to be patterned, a first layer of a material selected from the group of SiO2 and SiON disposed on top of the carbon layer and a silicon layer disposed on top of the first layer. A method of patterning a layer to be patterned includes providing the above described hard mask layer stack on the layer to be patterned and patterning the silicon hard mask layer in accordance with a pattern to be formed in the layer that has to be patterned.
Abstract:
A DRAM memory cell is provided with a selection transistor, which is arranged horizontally at a semiconductor substrate surface and has a first source/drain electrode, a second source/drain electrode, a channel layer arranged between the first and the second source/drain electrode in the semiconductor substrate, and a gate electrode, which is arranged along the channel layer and is electrically insulated from the channel layer, a storage capacitor, which has a first capacitor electrode and a second capacitor electrode, insulated from the first capacitor electrode, one of the capacitor electrodes of the storage capacitor being electrically conductively connected to one of the source/drain electrodes of the selection transistor, and a semiconductor substrate electrode on the rear side, the gate electrode enclosing the channel layer at at least two opposite sides.
Abstract:
An integrated circuit including a gate electrode is disclosed. One embodiment provides a transistor including a first source/drain electrode and a second source/drain electrode. A channel is arranged between the first and the second source/drain electrode in a semiconductor substrate. A gate electrode is arranged adjacent the channel layer and is electrically insulated from the channel layer. A semiconductor substrate electrode is provided on a rear side. The gate electrode encloses the channel layer at at least two opposite sides.
Abstract:
In a method for fabricating a capacitor that includes an electrode structure (80), an auxiliary layer (40) is formed over a substrate (10). A recess (60), which determines the shape of the electrode structure (80), is etched into the auxiliary layer (40), and the electrode structure of the capacitor is formed in the recess. As an example, the auxiliary layer can be a semiconductor layer (40).
Abstract:
A method is proposed for locally heating a region that is disposed in a substrate. A substrate is provided and at least one region is produced in the substrate with a lower specific resistance than the surrounding substrate. The region is then locally heated by inducing eddy currents by irradiation with electromagnetic energy.
Abstract:
A transistor fin of a fin field-effect transistor is arranged between two contact structures. A gate electrode encapsulating the transistor fin on three sides is caused to recede by means of a nonlithographic process from contact trenches, which define the contact structures, before the formation of the contact structures. A distance a between the gate electrode and the contact structures is not subject to any tolerances due to the overlay of two independent lithographic masks. For a given extent of the gate electrode along the transistor fin, it is possible to minimize a distance A between the contact structures and thereby significantly increase the packing density of a plurality of fin field-effect transistors on a substrate compared with conventional devices.