Abstract:
An eddy current sensor has an exciting coil and a detection coil. A holding circuit holds reference data indicating a characteristic of an output signal output from the detection coil at a reference state and outputs the reference data at a state other than the reference state. A pseudo signal generating circuit generates and outputs a balance coil pseudo signal corresponding to the output signal output from the detection coil at the reference state from the reference data output from the holding circuit. A bridge circuit, at the state other than the reference state, receives the output signal output from the detection coil and the balance coil pseudo signal and outputs a bridge output signal corresponding to a difference between the output signal and the balance coil pseudo signal as a bridge output signal.
Abstract:
To quickly grasp a film thickness distribution of a film to be processed on a substrate after CMP and realize high-speed substrate processing, an embodiment of the present invention provides a method for specifying an area to be partially polished by a partial polishing device in a substrate processing apparatus. The substrate processing apparatus includes a substrate polishing device that polishes an entire surface of a film to be processed formed on at least one surface of the substrate. The substrate polishing device includes a film thickness sensor. The substrate processing apparatus further includes the partial polishing device that further partially polishes the film to be processed of the substrate polished by the substrate polishing device. The method includes specifying an area to be partially polished by the partial polishing device based on film thickness distribution data of the film to be processed obtained from the film thickness sensor of the substrate polishing device.
Abstract:
A polishing is used for polishing a substrate such as a semiconductor wafer to a flat mirror finish. The polishing apparatus includes a polishing table having a polishing surface, a substrate holding apparatus configured to hold the substrate and to press the substrate against the polishing surface, and a controller. The substrate holding apparatus includes an elastic membrane configured to forma substrate holding surface which is brought into contact with the substrate, a carrier provided above the elastic membrane, at least one pressure chamber formed between the elastic membrane and the carrier, and an infrared light detector configured to measure thermal energy from the elastic membrane. The controller calculates an estimate value of a temperature of the elastic membrane using a measured value of the infrared light detector.
Abstract:
A method of polishing a substrate having a film is provided. The method includes: performing polishing of the substrate in a polishing section; transporting the polished substrate to a wet-type film thickness measuring device prior to cleaning and drying of the substrate; measuring a thickness of the film by the wet-type film thickness measuring device; comparing the thickness with a predetermined target value; and if the thickness has not reached the predetermined target value, performing re-polishing of the substrate in the polishing section prior to cleaning and drying of the substrate.
Abstract:
A method of polishing a substrate having a film is provided. The method includes: performing polishing of the substrate in a polishing section; transporting the polished substrate to a wet-type film thickness measuring device prior to cleaning and drying of the substrate; measuring a thickness of the film by the wet-type film thickness measuring device; comparing the thickness with a predetermined target value; and if the thickness has not reached the predetermined target value, performing re-polishing of the substrate in the polishing section prior to cleaning and drying of the substrate.
Abstract:
To planarize a substrate having irregularities on its surface. Provided is a method of chemical mechanical polishing of a substrate. The method includes the step of polishing the substrate using a processing solution, and the step of changing concentration of an effective component in the processing solution, which contributes to the polishing of the substrate.
Abstract:
A magnetic element for strengthening a magnetic field formed in an object and an eddy current sensor using the magnetic field are provided. The eddy current sensor includes a bottom face portion which is a magnetic body, a magnetic core portion provided at the middle of the bottom face portion and a peripheral wall portion provided on the periphery of the bottom face portion. The eddy current sensor further includes an excitation coil disposed on an outer periphery of the magnetic core portion and capable of generating a magnetic field and an excitation coil disposed on an outer periphery of the peripheral wall portion and capable of generating a magnetic field.
Abstract:
One object is to provide a polishing machine and a polishing method capable of improving a processing accuracy on the surface of an object. A method of polishing an object is provided. Such a method comprises: a first step of polishing an object by moving the object and a first polishing pad having a smaller dimension than that of the object relative to each other while the first polishing pad is made to contact the object, a second step of polishing the object, after the first step of polishing, by moving the object and a second polishing pad having a larger dimension than that of the object relative to each other while the second polishing pad is made to contact the object, and a step of detecting the state of the surface of the object before the first step of polishing.
Abstract:
A polishing apparatus includes a table rotating motor configured to rotate a polishing table about its own axis, a top ring rotating motor configured to rotate a top ring about its own axis, a dresser configured to dress a polishing pad, and a pad-height measuring device configured to measure a height of the polishing pad. The polishing apparatus also includes a diagnostic device configured to calculate an amount of wear of the polishing pad from the height of the polishing pad and to determine the end of a life of the polishing pad based on the amount of the wear of the polishing pad, the torque or current of the table rotating motor, and the torque or current of the top ring rotating motor.
Abstract:
The method includes the steps of measuring a surface height of a polishing member 10 at each of plural oscillation sections Z1 to Z5 which are defined in advance on the polishing member 10 along an oscillation direction of a dresser 5; calculating a difference between a current profile obtained from measured values of the surface height and a target profile of the polishing member 10; and correcting moving speeds of the dresser 5 in the plural oscillation sections Z1 to Z5 so as to eliminate the difference.