摘要:
An air-fuel ratio control system for an internal combustion engine having a fuel injection valve for each cylinder and an electronic air control valve (EACV) for controlling intake air bypassing the engine throttle valve. When the target air-fuel ratio is switched over from a rich value to a lean value, the amounts of fuel injected into the cylinders, for example, #1, #2, #3 and #4 cylinders are controlled so that they are sequentially decreased at predetermined intervals, and the EACV is controlled to be opened stepwise. This causes a decrease in engine torque generated by the switching-over of the target air-fuel ratio to be offset by an increase in engine torque generated by an increase in amount of air drawn, thereby preventing the generation of a torque shock. At this time, the target opening degree of the EACV is corrected based on the magnitude of the interval and the magnitude of a loading of the internal combustion engine, thereby further effectively preventing the generation of the torque shock.
摘要:
A control system is provided in an internal combustion engine in which a valve timing such as an opening time point and lift amount of an intake valve can be switched to a low-speed or high-speed valve timing within a lean-burn control range established in accordance with the operational state, such as an intake pipe internal absolute pressure and an engine revolution number of the engine, wherein an air-fuel ratio of an air-fuel mixture supplied to the internal combustion engine is enriched for a predetermined time when the valve timing is switched from the low-speed valve timing to the high-speed valve timing while carrying out a lean-burn control. Thus, even when the valve timing is switched over to the high-speed valve timing, the lean-burn control is carried out to prevent a misfiring or an unstable combustion state caused when the valve timing is switched during the lean-burn control, thereby providing a reduction in emission and an enhancement in drivability, while enhancing the specific fuel consumption.
摘要:
A system for controlling fuel injection in an internal combustion engine such that when the target air-fuel ratio is switched from a rich value to a lean value, the air-fuel ratios are switched to the lean value by sequentially decreasing the amount of fuel injected into the cylinders, for example in a four cylinder engine into the #1, #2, #3 and #4 cylinders, with predetermined time differences. During this time, an electronic air control valve (EACV) is controlled in such a manner that it is stepwise opened with the switching of the air-fuel ratio s for the #1, #2, #3 and #4 cylinders, thereby causing the engine torque to remain the same to prevent the generation of a torque shock. When the target air-fuel ratio has been switched from the lean level to the rich level, the amounts of fuel injected into the #1, #2, #3 and #4 cylinders are controlled in such a manner that they are sequentially increased with predetermined time differences, and the EACV is controlled in such a manner that it is stepwise closed. Thus, it is possible to avoid the generation of a torque shock, while preventing the degradation of the emission during switching of the air-fuel ratio.
摘要:
A system for controlling fuel injection in an internal combustion engine such that when the target air-fuel ratio is switched from a rich value to a lean value, the air-fuel ratios are switched to the lean value by sequentially decreasing the amount of fuel injected into the cylinders, for example in a four cylinder engine into the #1, #2, #3 and #4 cylinders, with predetermined time differences. During this time, an electronic air control valve (EACV) is controlled in such a manner that it is stepwise opened with the switching of the air-fuel ratios for the #1, #2, #3 and #4 cylinders, thereby causing the engine torque to remain the same to prevent the generation of a torque shock. When the target air-fuel ratio has been switched from the lean level to the rich level, the amounts of fuel injected into the #1, #2, #3 and #4 cylinders are controlled in such a manner that they are sequentially increased with predetermined time differences, and the EACV is controlled in such a manner that it is stepwise closed. Thus, it is possible to avoid the generation of a torque shock, while preventing the degradation of the emission during switching of the air-fuel ratio.
摘要:
A system for controlling fuel injection in an internal combustion engine such that when the target air-fuel ratio is switched from a rich value to a lean value, the air-fuel ratios are switched to the lean value by sequentially decreasing the amount of fuel injected into the cylinders, for example in a four cylinder engine into the #1, #2, #3 and #4 cylinders, with predetermined time differences. During this time, an electronic air control valve (EACV) is controlled in such a manner that it is stepwise opened with the switching of the air-fuel ratios for the #1, #2, #3 and #4 cylinders, thereby causing the engine torque to remain the same to prevent the generation of a torque shock. When the target air-fuel ratio has been switched from the lean level to the rich level, the amounts of fuel injected into the #1, #2, #3 and #4 cylinders are controlled in such a manner that they are sequentially increased with predetermined time differences, and the EACV is controlled in such a manner that it is stepwise closed. Thus, it is possible to avoid the generation of a torque shock, while preventing the degradation of the emission during switching of the air-fuel ratio.
摘要:
A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for assisting the engine in rotating the drive axle and converting kinetic energy of the drive axle into electric energy in a regenerative mode, and an electric energy storage unit connected through a drive control circuit to the electric motor, for storing electric energy. The control system has a regenerative quantity determining unit which includes first, second, and third first regenerative quantity establishing units. The first regenerative quantity establishing unit establishes a first regenerative quantity for the electric motor based on a vehicle speed of the hybrid vehicle when the supply of fuel to the engine is stopped upon deceleration of the hybrid vehicle. The second regenerative quantity establishing unit establishes a second regenerative quantity for the electric motor based on a remaining capacity of the electric energy storage unit. The third regenerative quantity establishing unit establishes a third regenerative quantity for the electric motor based on a temperature of the drive control circuit. A pumping loss controlling unit controls pumping losses of the engine based on the first, second, and third regenerative quantities.
摘要:
A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for assisting the engine in rotating the drive axle with electric energy and converting kinetic energy of the drive axle into electric energy, and an electric energy storage unit or a capacitor for supplying electric energy to the electric motor and storing electric energy outputted by the electric motor. When the remaining capacity CAPAremc of the capacitor is smaller than a first predetermined remaining capacity REMC1 or the remaining capacity CAPAremc of the capacitor is smaller than a second predetermined remaining capacity REMC2 (>REMC1) and an assistive-mode integrated discharged value DISCHG of the capacitor 14, which is calculated while the electric motor has operated in a latest mode to assist in running the hybrid vehicle, is greater than a predetermined discharged quantity disch1, the control system calculates a regenerated quantity increasing corrective coefficient Kregup (>1) depending on the vehicle speed. The control system multiplies a basic decelerating regenerative quantity DECreg by the corrective coefficient Kregup to determine a demand output power MOTORpower for the electric motor for thereby increasing the amount of electric energy regenerated by the electric motor when the hybrid vehicle decelerates.
摘要:
A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for converting kinetic energy of the drive axle into electric energy in a regenerative mode, a drive control circuit for controlling the electric motor, and electric energy storage device for storing electric energy. The control system has an intake air control unit for controlling an amount of intake air supplied to the engine, and an exhaust gas recirculation control valve for controlling recirculation of exhaust gases from an exhaust system of the engine to an intake system of the engine. A control unit operates the intake air control unit to reduce the amount of intake air and operating the exhaust gas recirculation control valve in an opening direction when the electric motor operates in the regenerative mode while the hybrid vehicle is decelerating.
摘要:
There is provided a control system for a hybrid vehicle including an internal combustion engine, a drive shaft driven by the engine, a motor operable on electrical energy for driving the drive shaft, and electrical storage device for supplying electrical energy to the motor. An amount of assistance of the motor to the engine by driving the drive shaft is calculated based at least on load on the engine. An output from the motor is controlled based on the amount of assistance of the motor to the engine. It is determined whether conditions are satisfied for a lean operating mode of the engine in which an air-fuel ratio of a mixture supplied to the engine is controlled to a leaner value than a stoichiometric value. Changeover of an operating mode of the engine is carried out between a stoichiometric operating mode in which the air-fuel ratio of the mixture supplied to the engine is controlled to a value at or close to the stoichiometric value and the lean operation or the lean operating mode, based on the amount of assistance of the motor to the engine and results of the determination of the lean operating condition.
摘要:
A control system controls a hybrid vehicle having an engine for rotating a drive axle, an electric motor for assisting the engine in rotating the drive axle and converting kinetic energy of the drive axle into electric energy in a regenerative mode, and an electric energy storage unit connected through a drive control circuit to the electric motor, for storing electric energy. The control system has a regenerative quantity determining unit which includes first, second, and third first regenerative quantity establishing units. The first regenerative quantity establishing unit establishes a first regenerative quantity for the electric motor based on a vehicle speed of the hybrid vehicle when the supply of fuel to the engine is stopped upon deceleration of the hybrid vehicle. The second regenerative quantity establishing unit establishes a second regenerative quantity for the electric motor based on a remaining capacity of the electric energy storage unit. The third regenerative quantity establishing unit establishes a third regenerative quantity for the electric motor based on a temperature of the drive control circuit. A pumping loss controlling unit controls pumping losses of the engine based on the first, second, and third regenerative quantities.