摘要:
A semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.
摘要:
A semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.
摘要:
A semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.
摘要:
A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
摘要:
A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
摘要:
A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
摘要:
A semiconductor light emitting device is combined with a wavelength converting material. The semiconductor light emitting device is configured to emit first light of a first peak wavelength. The wavelength converting material is configured to absorb at least a portion of the first light and emit second light of a second peak wavelength. In some embodiments, the first wavelength converting material is (Ba1-xSrx)2-y-0.5zSi5N8-zOz:Euy2+ where 0.2
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent optical element (e.g., a lens or an optical concentrator) to a light emitting device comprising an active region includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the light emitting device together. A block of optical element material may be bonded to the light emitting device and then shaped into an optical element. Bonding a high refractive index optical element to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
A structure includes a semiconductor light emitting device including a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer emits first light of a first peak wavelength. A wavelength-converting material that absorbs the first light and emits second light of a second peak wavelength is disposed in the path of the first light. A filter material that transmits a portion of the first light and absorbs or reflects a portion of the first light is disposed over the wavelength-converting material.
摘要:
A structure includes a semiconductor light emitting device including a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer emits first light of a first peak wavelength. A wavelength-converting material that absorbs the first light and emits second light of a second peak wavelength is disposed in the path of the first light. A filter material that transmits a portion of the first light and absorbs or reflects a portion of the first light is disposed over the wavelength-converting material.