摘要:
An optical semiconductor device of the present invention is provided with a core layer having a quantum well layer in that film thickness gets thinner from a inner region to an end portion in an optical waveguide region.
摘要:
An optical semiconductor device of the present invention is provided with a core layer having a quantum well layer in that film thickness gets thinner from a inner region to an end portion in an optical waveguide region.
摘要:
A fabricating method of compound semiconductor device is proposed which has a step of varying selective growth ratio of crystal by changing either a mean free path of material gas in gas atmosphere for use in crystal growth or a thickness of a stagnant layer of the material gas, using selective growth mask having opening portion consisting of first region having a narrow width and second region having a wide width.
摘要:
A fabricating method of compound semiconductor device is proposed which has a step of varying selective growth ratio of crystal by changing either a mean free path of material gas in gas atmosphere for use in crystal growth or a thickness of a stagnant layer of the material gas, using selective growth mask having opening portion consisting of first region having a narrow width and second region having a wide width.
摘要:
A first layer of InP is deposited on a diffraction grating so as to cover it, by MOCVD in which PH3 or organophosphorus is used as a source material of P and in which H2 is used as a carrier gas. The substrate is heated up to a temperature which is higher than the substrate temperature during the first layer deposition, and then a second layer is deposited on the first layer. An active layer is deposited on the second layer. Found out is such a growth rate of an InP layer as to cause the photoluminescence intensity of a layer corresponding to the active layer to be one tenth as small as that when the InP layer is deposited at a growth rate of 0.2 microns per hour in the case where the InP layer deposition is carried out instead of the first layer deposition under the conditions wherein the ratio of the flow rate of the source material of P to the total flow rate of the carrier gas and the substrate temperature are the same as those in the first layer deposition but the growth rate of the InP layer is different from that of the first layer. The growth rate of the first layer is lower than such a growth rate of the InP layer as to cause the photoluminescence intensity to be one tenth. Accordingly, a diffraction grating can be formed with excellent reproductiveness and high accuracy, moreover, a high quality semiconductor layer can be deposited on thus formed diffraction grating.
摘要:
In a p-type clad layer, not only a p-type dopant Zn but also Fe is doped. Its Zn concentration is 1.5×1018 cm−3 and the Fe concentration is 1.8×1017 cm−3. In a semi-insulating burying layer, Fe is doped as an impurity generating a deep acceptor level and the concentration thereof is 6.0×1016 cm−3. The Fe concentration in the p-type clad layer is thus three times higher than the Fe concentration in the burying layer.
摘要:
A semiconductor optical integrated device includes a first semiconductor optical device formed over a (001) plane of a substrate and a second semiconductor optical device which is formed over the (001) plane of the substrate in a (110) orientation from the first semiconductor optical device and which is optically connected to the first semiconductor optical device. The first semiconductor optical device includes a first core layer and a first clad layer which is formed over the first core layer and which has a crystal surface on a side on a second semiconductor optical device side that forms an angle θ greater than or equal to 55 degrees and less than or equal to 90 degrees with the (001) plane.
摘要:
An optical semiconductor device includes an active layer, a first semiconductor layer formed above the active layer and made from a semiconductor material containing Al, a second semiconductor layer formed above the first semiconductor layer and made from a semiconductor material which does not contain any one of Al and P and whose band gap is greater than that of the active layer, and a third semiconductor layer formed above the second semiconductor layer and made from a semiconductor material which does not contain Al but contains P. The second semiconductor layer is formed such that the first semiconductor layer and the third semiconductor layer do not contact with each other.
摘要:
In order to prevent As/P replacement at the boundary face of a re-grown semiconductor layer and avoid a crystalline defect caused by the replacement, there is provided an optical semiconductor device comprising: a semiconductor substrate; a striped stacking body including a first semiconductor layer, an active layer, and a second semiconductor layer; and a burying layer burying the striped stacking body striped stacking body, wherein surfaces in contact with a side face and a bottom face of the burying layer are made of a compound semiconductor that contains arsenic (As) alone as a group V element, and a portion other than the surface includes a group V element other than arsenic.
摘要:
A semiconductor optical integrated device includes a first semiconductor optical device formed over a (001) plane of a substrate and a second semiconductor optical device which is formed over the (001) plane of the substrate in a (110) orientation from the first semiconductor optical device and which is optically connected to the first semiconductor optical device. The first semiconductor optical device includes a first core layer and a first clad layer which is formed over the first core layer and which has a crystal surface on a side on a second semiconductor optical device side that forms an angle θ greater than or equal to 55 degrees and less than or equal to 90 degrees with the (001) plane.