摘要:
A resonant tunneling device includes a superlattice layer which includes an interlaminated structure of three semiconductor layers each having a narrow energy bandgap and serving as a quantum well layer and four semiconductor layers each having a wide energy bandgap and serving as a barrier layer and in which three quantum levels are formed in the quantum well layers. A resonant tunneling phenomenon produced between the quantum levels provides peak current values which are substantially equal to each other, peak voltages which can be set independently from each other, and peak-to-valley (P/V) ratios which are high, thereby realizing a resonant tunneling device which has an excellent performance as a three state logic element for a logic circuit. By increasing the number of quantum well layers and the number of barrier layers, a logic element of four or more states can be realized for a logic circuit.
摘要:
A semiconductor device is disclosed, which includes a multiple negative differential resistance element having negative differential resistance characteristics at at least two places in the current-voltage characteristics, and which is suitable for constructing a neural network having a high density integration and a high reliability.
摘要:
A controllable conduction device in the form of a transistor comprises source and drain regions 5, 2 between which extends a conduction path P for charge carriers, a gate 4 for controlling charge carrier flow along the conduction path and a multiple layer structure 3 providing a multiple tunnel junction configuration in the conduction path, with the result that current leakage is blocked by the multiple tunnel junction configuration when the transistor is in its off state. Vertical and lateral transistor configurations are described, together with use of the transistor in complimentary pairs and for a random access memory cell. Improved gate structures are described which are also applicable to memory devices that incorporate the tunnel barrier configuration to store charge on the memory node.
摘要:
A controllable conduction device in the form of a transistor comprises source and drain regions 5, 2 between which extends a conduction path P for charge carriers, a gate 4 for controlling charge carrier flow along the conduction path and a multiple layer structure 3 providing a multiple tunnel junction configuration in the conduction path, with the result that current leakage is blocked by the multiple tunnel junction configuration when the transistor is in its off state. Vertical and lateral transistor configurations are described, together with use of the transistor in complimentary pairs and for a random access memory cell. Improved gate structures are described which are also applicable to memory devices that incorporate the tunnel barrier configuration to store charge on the memory node.
摘要:
A controllable conduction device in the form of a transistor comprises source and drain regions 5, 2 between which extends a conduction path P for charge carriers, a gate 4 for controlling charge carrier flow along the conduction path and a multiple layer structure 3 providing a multiple tunnel junction configuration in the conduction path, with the result that current leakage is blocked by the multiple tunnel junction configuration when the transistor is in its off state. Vertical and lateral transistor configurations are described, together with use of the transistor in complimentary pairs and for a random access memory cell. Improved gate structures are described which are also applicable to memory devices that incorporate the tunnel barrier configuration to store charge on the memory node.
摘要:
A memory device includes a memory node (1) to which charge is written through a tunnel barrier configuration (2) from a control electrode (9). The stored charge effects the conductivity of a source/drain path (4) and data is read by monitoring the conductivity of the path. The charge barrier configuration comprises a multiple tunnel barrier configuration, which may comprise alternating layers (16) of polysilicon of 3 nm thickness and layers (15) of Si3N4 of 1 nm thickness, overlying polycrystalline layer of silicon (1) which forms the memory node. Alternative barrier configurations (2) are described, including a Schottky barrier configuration, and conductive nanometer scale conductive islands (30, 36, 44), which act as the memory node, distributed in an electrically insulating matrix.
摘要翻译:存储器件包括从控制电极(9)通过隧道势垒配置(2)写入电荷的存储器节点(1)。 存储的电荷影响源/漏路径(4)的电导率,并且通过监测路径的电导率来读取数据。 电荷势垒配置包括多隧道势垒结构,其可以包括3nm厚度的多晶硅的交替层(16)和1nm厚度的Si 3 N 4层(15),覆盖形成存储器节点的硅的多晶层(1) 。 描述了包括肖特基势垒结构的替代屏障配置(2)和用作存储节点的导电纳米级导电岛(30,36,44),其分布在电绝缘矩阵中。
摘要:
A high speed/large capacity DRAM (Dynamic Random Access Memory) is generally refreshed each 0.1 sec because it loses information stored therein due to a leakage current. The DRAM also loses information stored therein upon cutoff of a power source. Meanwhile, a nonvolatile ROM (Read-only Memory) cannot be configured as a high speed/large capacity memory. A semiconductor memory device of the present invention realizes nonvolatile characteristic by shielding a drain functioning as a memory node from a leakage current by a tunnel insulator, and also realizes stable and high speed operation by adding a transistor for reading to a memory cell.
摘要:
A transistor device comprising source and drain regions (S, D), a nanotube structure (2, 3) providing a path for electrical charge carriers between the source and drain regions, and a gate region (4). The nanotube structure has its conduction band structure locally modified in the gate region, e.g. by doping, for controlling the passage of the charge carriers in the path. The device can be used as a flash memory or as a memory element in a DRAM.
摘要:
A magnetoelectric device responsive to an applied magnetic field, e.g. for use as a reading head for data stored in magnetic storage media, comprises first and second ferromagnetic regions (3, 4) with a channel region (5) between them, the ferromagnetic regions being configured so that charge carriers with a particular spin polarization which can pass through the first region, pass through the second region as a function of the relative orientations of magnetization of the ferromagnetic regions produced by the applied magnetic field such that the device exhibits a conductivity as a function of the strength of the applied field. The channel region (5) includes a nanotube (6) which may be formed of carbon, configured to provide a quasi-one-dimensional channel to cause charge carriers which pass through the first ferromagnetic region to maintain their spin polarization as they pass towards the second ferromagnetic region. In an alternative embodiment a deposited carbon layer (14) is used in the channel region.
摘要:
A high speed/large capacity DRAM (Dynamic Random Access Memory) is generally refreshed each 0.1 sec because it loses information stored therein due to a leakage current. The DRAM also loses information stored therein upon cutoff of a power source. Meanwhile, a nonvolatile ROM (Read-only Memory) cannot be configured as a high speed/large capacity memory. A semiconductor memory device of the present invention realizes nonvolatile characteristic by shielding a drain functioning as a memory node from a leakage current by a tunnel insulator, and also realizes stable and high speed operation by adding a transistor for reading to a memory cell.