摘要:
A method of generating a layout for a semiconductor device array is provided. A first layout is provided, comprising an active conductive feature, a boundary area surrounding the active conductive feature, and an open area other than the active conductive feature and the boundary area. A plurality of dummy templates of different pattern densities are provided, each of which comprises a plurality of dummy seeds. A second layout is generated by adding the dummy seeds on the open area according to at least one of the dummy templates.
摘要:
A method of generating a layout for a semiconductor device array is provided. A first layout is provided, comprising an active conductive feature, a boundary area surrounding the active conductive feature, and an open area other than the active conductive feature and the boundary area. A plurality of dummy templates of different pattern densities are provided, each of which comprises a plurality of dummy seeds. A second layout is generated by adding the dummy seeds on the open area according to at least one of the dummy templates.
摘要:
The present disclosure provides a method and system for heat dissipation in semiconductor devices. In one example, an integrated circuit semiconductor device includes a semiconductor substrate; one or more metallurgy layers connected to the semiconductor substrate, and each of the one or more metallurgy layers includes: one or more conductive lines; and one or more dummy structures between the one or more conductive lines and at least two of the one or more dummy structures are connected; and one or more dielectric layers between the one or more metallurgy layers.
摘要:
A semiconductor structure and method for dissipating heat away from a semiconductor device having a plurality of power lines is provided. The semiconductor structure includes a semiconductor substrate and a plurality of interconnect structures disposed on the substrate and in contact therewith and extending through the semiconductor device, the interconnect structures for dissipating heat to the substrate. Each of the plurality of interconnect structures comprises at least one via stack.
摘要:
The present disclosure provides a method and system for heat dissipation in semiconductor devices. In one example, an integrated circuit semiconductor device includes a semiconductor substrate; one or more metallurgy layers connected to the semiconductor substrate, and each of the one or more metallurgy layers includes: one or more conductive lines; and one or more dummy structures between the one or more conductive lines and at least two of the one or more dummy structures are connected; and one or more dielectric layers between the one or more metallurgy layers.
摘要:
A semiconductor structure and method for dissipating heat away from a semiconductor device having a plurality of power lines is provided. The semiconductor structure includes a semiconductor substrate and a plurality of interconnect structures disposed on the substrate and in contact therewith and extending through the semiconductor device, the interconnect structures for dissipating heat to the substrate. Each of the plurality of interconnect structures comprises at least one via stack.
摘要:
Packaged devices and methods of forming packaged devices are provided. At least one device is disposed on a substrate. The material layer encapsulates the device and covers at least a portion of the substrate, wherein the material layer comprises at least a first portion adjacent to the device and a second portion over the first portion. The second portion has a thermal conductivity higher than a thermal conductivity of the first portion.
摘要:
A semiconductor device package has a concavity-containing encapsulation body to prevent device delamination and increase thermal-transferring efficiency. An encapsulation body of polymer-based material encapsulates a semiconductor device and bonding wires, and a concavity structure is patterned on the encapsulation body by imprinting, laser drilling, photolithography, dry etching, die sawing, or other surface patterning technologies.
摘要:
A method is disclosed for determining a size of an interconnect between a first and a second conductor respectively in two layers of an integrated circuit while scaling from a reference processing technology to a predetermined processing technology. The method comprises selecting a set of design rules for the conductors based on the predetermined processing technology, determining a length of a first side of a rectangular cross sectional area of the interconnect based on the design rules and a scaling rule for scaling such a length from the reference processing technology to the predetermined processing technology, and determining a length of a second side of the cross sectional area of the interconnect for compensating an increase of a resistance of the interconnect due to the scaling from the reference processing technology to the predetermined processing technology.
摘要:
A method is disclosed for depositing a Black Diamond layer in a CVD chamber. Trimethylsilane, O2, and Ar are flowed into the chamber at 300° C. to 400° C. with an O2:Ar:trimethylsilane flow rate ratio that is preferably 1:1.5:6. The resulting low k dielectric layer is formed with a higher deposition rate than when Ar is omitted and has a k value of about 3 that increases only slightly in O2 plasma. A higher density, hardness, and tensile strength are achieved in the Black Diamond layer when Ar is included in the deposition process. The addition of Ar in the deposition maintains film thickness uniformity below 2% for a longer period so that PM cleaning operations are less frequent and affords a lower fluorocarbon plasma etch rate to enable improved trench depth control in a damascene scheme. A lower leakage current and higher breakdown voltage in achieved in the resulting metal interconnect.