摘要:
An example embodiment is a method of curing a film over a semiconductor structure. We provide a semiconductor structure comprised of a substrate and an interconnect structure. We provide a film over the semiconductor structure. We provide an electron source, an anode grid between the electron source and the semiconductor structure. We cure the film by exposing the film to an electron beam from the electron source that passes through the anode grid. We control the electron beam by controlling the bias voltage between the anode grid and the semiconductor structure. Another embodiment is a tool for curing a film.
摘要:
A method of forming a barrier layer and cap comprised of CuSiN for an interconnect. We provide an interconnect opening in a dielectric layer over a semiconductor structure. We form a CuSiN barrier layer over the sidewalls and bottom of the interconnect opening by reacting with the first copper layer. We then form an interconnect over the CuSiN layer filling the interconnect opening. We can form a CuSiN cap layer on the top surface of the interconnect.
摘要:
An example process to remove spacers from the gate of a NMOS transistor. A stress creating layer is formed over the NMOS and PMOS transistors and the substrate. In an embodiment, the spacers on gate are removed so that stress layer is closer to the channel of the device. The stress creating layer is preferably a tensile nitride layer. The stress creating layer is preferably a contact etch stop liner layer. In an embodiment, the gates, source and drain region have an silicide layer thereover before the stress creating layer is formed. The embodiment improves the performance of the NMOS transistors.
摘要:
An example method embodiment forms spacers that create tensile stress on the substrate on both the PFET and NFET regions. We form PFET and NFET gates and form tensile spacers on the PFET and NFET gates. We implant first ions into the tensile PFET spacers to form neutralized stress PFET spacers. The neutralized stress PFET spacers relieve the tensile stress created by the tensile stress spacers on the substrate. This improves device performance.
摘要:
An intermetal dielectric structure for integrated circuits and a manufacturing method therefore is provided having a premetal dielectric and a metal line thereon, with a SRO liner on the premetal dielectric layer and the metal lines, a FGS dielectric layer over the SRO liner, a SRO film over the FGS dielectric layer, and a TEOS dielectric layer over the SRO film. Vias through the FGS dielectric layer are treated to have fluorine-free regions around the vias. The structure is not subject to fluorine attack on the metal lines or vias while having a stable FGS dielectric layer with less fluorine out-gassing and out-diffusion.
摘要:
A method for depositing silicon dioxide between features has been achieved. The method may be applied intermetal dielectrics, interlevel dielectric, or shallow trench isolations. This method prevents dielectric voids, corner clipping, and plasma induced damage in very small feature applications. Features, such as conductive traces, are provided overlying a semiconductor substrate where the spaces between the features form gaps. A silicon dioxide liner layer is deposited overlying the features and lining the gaps, yet leaving the gaps open. The silicon dioxide liner layer depositing step is by high density plasma, chemical vapor deposition (HDP CVD) using a gas mixture comprising silane, oxygen, and argon. The argon gas pressure, chamber pressure, and the sputter rf energy are kept low. A silicon dioxide gap filling layer is deposited overlying the silicon dioxide liner layer to fill the gaps, and the integrated circuit device is completed. The silicon dioxide gap filling layer depositing step is by high density plasma, chemical vapor deposition (HDP CVD) using a gas mixture comprising silane, oxygen, and argon. The argon gas pressure and chamber pressure are kept low while the sputter rf energy is increased.
摘要:
An intermetal dielectric structure for integrated circuits is provided having a premetal dielectric and a metal line thereon, with a SRO liner on the premetal dielectric layer and the metal lines, a FGS dielectric layer over the SRO liner, a SRO film over the FGS dielectric layer, and a TEOS dielectric layer over the SRO film. Vias through the FGS dielectric layer are treated to have fluorine-free regions around the vias. The structure is not subject to fluorine attack on the metal lines or vias while having a stable FGS dielectric layer with less fluorine out-gassing and out-diffusion.
摘要:
A method of forming a barrier layer and cap comprised of CuSiN for an interconnect. We provide an interconnect opening in a dielectric layer over a semiconductor structure. We form a CuSiN barrier layer over the sidewalls and bottom of the interconnect opening by reacting with the first copper layer. We then form an interconnect over the CuSiN layer filling the interconnect opening. We can form a CuSiN cap layer on the top surface of the interconnect.
摘要:
A semiconductor chip having an exposed metal terminating pad thereover, and a separate substrate having a corresponding exposed metal bump thereover are provided. A conducting polymer plug is formed over the exposed metal terminating pad. A conforming interface layer is formed over the conducting polymer plug. The conducting polymer plug of the semiconductor chip is aligned with the corresponding metal bump. The conforming interface layer over the conducting polymer plug is mated with the corresponding metal bump. The conforming interface layer is thermally decomposed, adhering and permanently attaching the conducting polymer plug with the corresponding metal bump. Methods of forming and patterning a nickel carbonyl layer are also disclosed.
摘要:
A method of sputtering a Ta layer comprised of alpha phase Ta on a Cu layer. An embodiment includes a Ta sputter deposition on a Cu surface at a substrate temperature less than 200° C. Another embodiment has a pre-cooling step at a temperature less than 100° C. prior to Ta layer sputter deposition. In another non-limiting example embodiment, a pre-clean step comprising an inert gas sputter is performed prior to the tantalum sputter. Another non-limiting example embodiment provides a semiconductor structure comprising: a semiconductor structure; a copper layer over the semiconductor structure; a tantalum layer on the copper layer; the tantalum layer comprised alpha phase Ta; a metal layer on the tantalum layer.